158 research outputs found
Constitutive Expression of Functionally Active Protease-Activated Receptors 1 and 2 in Human Conjunctival Epithelial Cells
Protease-activated receptors (PARs) are G-protein-coupled receptors which initiate inflammatory responses when activated by specific serine proteases. This study was conducted to examine whether human conjunctival epithelial cells (HCECs) express functionally active PAR1 and PAR2 using Chang conjunctival epithelial cells as in vitro model. We performed RT-PCR and immunofluorescence analyses to determine the expression of PAR1 and PAR2, and monitored the production of IL-6 after activating HCECs with PAR1 activating agents (thrombin or TFLLRN) or PAR2 activating agents (tryptase, trypsin, or SLIGKV). The results show that HCECs constitutively express PAR1 and PAR2 mRNA and proteins, and produce significant amounts of IL-6 when incubated with specific PAR-activating enzymes or agonist peptides. Thrombin- and tryptase-induced HCEC activation was blocked by PAR1 and PAR2 neutralizing antibodies, respectively, and by specific enzyme inhibitors. The constitutive expression of PAR1 and PAR2, and their activation by thrombin and tryptase, respectively, may have important implications in ocular inflammation
BioBuilder as a database development and functional annotation platform for proteins
BACKGROUND: The explosion in biological information creates the need for databases that are easy to develop, easy to maintain and can be easily manipulated by annotators who are most likely to be biologists. However, deployment of scalable and extensible databases is not an easy task and generally requires substantial expertise in database development. RESULTS: BioBuilder is a Zope-based software tool that was developed to facilitate intuitive creation of protein databases. Protein data can be entered and annotated through web forms along with the flexibility to add customized annotation features to protein entries. A built-in review system permits a global team of scientists to coordinate their annotation efforts. We have already used BioBuilder to develop Human Protein Reference Database , a comprehensive annotated repository of the human proteome. The data can be exported in the extensible markup language (XML) format, which is rapidly becoming as the standard format for data exchange. CONCLUSIONS: As the proteomic data for several organisms begins to accumulate, BioBuilder will prove to be an invaluable platform for functional annotation and development of customizable protein centric databases. BioBuilder is open source and is available under the terms of LGPL
Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates
A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment
A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments
Investigation of progressive damage and fracture in laminated composites using the smeared crack approach
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97056/1/AIAA2012-1537.pd
A novel approach to modelling water transport and drug diffusion through the stratum corneum
<p>Abstract</p> <p>Background</p> <p>The potential of using skin as an alternative path for systemically administering active drugs has attracted considerable interest, since the creation of novel drugs capable of diffusing through the skin would provide a great step towards easily applicable -and more humane- therapeutic solutions. However, for drugs to be able to diffuse, they necessarily have to cross a permeability barrier: the <it>stratum corneum </it>(SC), the uppermost set of skin layers. The precise mechanism by which drugs penetrate the skin is generally thought to be diffusion of molecules through this set of layers following a "tortuous pathway" around corneocytes, i.e. impermeable dead cells.</p> <p>Results</p> <p>In this work, we simulate water transport and drug diffusion using a three-dimensional porous media model. Our numerical simulations show that diffusion takes place through the SC regardless of the direction and magnitude of the fluid pressure gradient, while the magnitude of the concentrations calculated are consistent with experimental studies.</p> <p>Conclusions</p> <p>Our results support the possibility for designing arbitrary drugs capable of diffusing through the skin, the time-delivery of which is solely restricted by their diffusion and solubility properties.</p
Cardiovascular magnetic resonance in pericardial diseases
The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases
- …