187 research outputs found

    Does mass accretion lead to field decay in neutron stars

    Get PDF
    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars

    Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    Get PDF
    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed

    Correlation between X-ray flux and rotational acceleration in Vela X-1

    Get PDF
    The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed

    Two-dimensional radiation-hydrodynamic model for limit-cycle oscillations of luminous accretion disks

    Full text link
    We investigate the time evolution of luminous accretion disks around black holes, conducting the two-dimensional radiation-hydrodynamic simulations. We adopt the alpha prescription for the viscosity. The radial-azimuthal component of viscous stress tensor is assumed to be proportional to the total pressure in the optically thick region, while the gas pressure in the optically thin regime. The viscosity parameter, alpha, is taken to be 0.1. We find the limit-cycle variation in luminosity between high and low states. When we set the mass input rate from the outer disk boundary to be 100 L_E/c^2, the luminosity suddenly rises from 0.3L_E to 2L_E, where L_E is the Eddington luminosity. It decays after retaining high value for about 40 s. Our numerical results can explain the variation amplitude and duration of the recurrent outbursts observed in microquasar, GRS 1915+105. We show that the multi-dimensional effects play an important role in the high-luminosity state. In this state, the outflow is driven by the strong radiation force, and some part of radiation energy dissipated inside the disk is swallowed by the black hole due to the photon-trapping effects. This trapped luminosity is comparable to the disk luminosity. We also calculate two more cases: one with a much larger accretion rate than the critical value for the instability and the other with the viscous stress tensor being proportional to the gas pressure only even when the radiation pressure is dominant. We find no quasi-periodic light variations in these cases. This confirms that the limit-cycle behavior found in the simulations is caused by the disk instability.Comment: 6 pages, 4 figures, accepted for publication in ApJ (ApJ 01 April 2006, v640, 2 issue

    X-Ray and Gamma-Ray Emission from the PSR 1259-63 / Be Star System

    Full text link
    PSR 1259-63 is a radio pulsar orbiting a Be star in a highly eccentric orbit. Soft and hard X-rays are observed from this binary system. We apply the shock powered emission model to this system. The collision of the pulsar and Be star winds forms a shock, which accelerates electrons and positrons to the relativistic energies. We derive the energy distribution of relativistic electrons and positrons as a function of the distance from the shock in the pulsar nebula. We calculate the X-rays and γ\gamma-rays emitted from the relativistic electrons and positrons in the nebula at various orbital phases, taking into account the Klein-Nishina effect fully. The shock powered emission model can explain the observed X-ray properties approximately. We obtain from the comparison with observations that a fraction of 0.1\sim 0.1 of the pulsar spin-down luminosity should be transformed into the relativistic electrons and positrons. We find that the magnetization parameter of the pulsar wind, the ratio of the Poynting flux to the kinetic energy flux, is 0.1\sim 0.1 immediately upstream of the termination shock of the pulsar wind, and may decrease with distance from the pulsar. We predict the flux of 10 MeV - 100 GeV γ\gamma-rays which may be nearly equal to the detection threshold in the future projects.Comment: 18 pages, 9 figures, accepted for publication in PAS

    Superfluid Friction and Late-time Thermal Evolution of Neutron Stars

    Get PDF
    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×1063\times 10^6 and 2×1072\times 10^7 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ωˉ0.6\bar\omega\sim 0.6 rad s1^{-1} for PSR 1929+10 and 0.02\sim 0.02 rad s1^{-1} for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by pinning of superfluid vortices to the inner crust lattice with strengths of \sim 1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally-activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (10\sim 10 rad s1^{-1}), a feedback instability could occur in stars younger than 105\sim 10^5 yr causing oscillations of the temperature and spin-down rate over a period of 0.3tage\sim 0.3 t_{\rm age}. For stars older than 106\sim 10^6 yr, however, vortex creep occurs through quantum tunneling, and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.Comment: 26 pages, 1 figure, submitted to Ap

    Subaru optical observations of the old pulsar PSR B0950+08

    Full text link
    We report the B band optical observations of an old (17.5 Myr) radiopulsar PSR B0950+08 obtained with the Suprime-Cam at the Subaru telescope. We detected a faint object, B=27.07(16). Within our astrometrical accuracy it coincides with the radio position of the pulsar and with the object detected earlier by Pavlov et al. (1996) in UV with the HST/FOC/F130LP. The positional coincidence and spectral properties of the object suggest that it is the optical counterpart of PSR B0950+08. Its flux in the B band is two times higher than one would expect from the suggested earlier Rayleigh-Jeans interpretation of the only available HST observations in the adjacent F130LP band. Based on the B and F130LP photometry of the suggested counterpart and on the available X-ray data we argue in favour of nonthermal origin of the broad-band optical spectrum of PSR B0950+08, as it is observed for the optical emission of the younger, middle-aged pulsars PSR B0656+14 and Geminga. At the same time, the optical efficiency of PSR B0950+08, estimated from its spin-down power and the detected optical flux, is by several orders of magnitude higher than for these pulsars, and comparable with that for the much younger and more energetic Crab pulsar. We cannot exclude the presence of a compact, about 1'', faint pulsar nebula around PSR B0950+08, elongated perpendicular to the vector of its proper motion, unless it is not a projection of a faint extended object on the pulsar position.Comment: 8 pages, LaTeX, aa.cls style, 5 PS figures, submitted to A&A. Image is available in FITS format at http://www.ioffe.rssi.ru/astro/NSG/obs/0950-subar

    Magnetars as cooling neutron stars with internal heating

    Get PDF
    We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetar's crust, at densities rho < 5e11 g/cm^3, and should have the heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.Comment: 8 pages, 5 figures, submitted to MNRA

    Suzaku Observation of AXP 1E 1841-045 in SNR Kes 73

    Full text link
    Anomalous X-ray pulsars (AXPs) are thought to be magnetars, which are neutron stars with ultra strong magnetic field of 101410^{14}-- 101510^{15} G. Their energy spectra below \sim10 keV are modeled well by two components consisting of a blackbody (BB) (\sim0.4 keV) and rather steep power-law (POW) function (photon index \sim2-4). Kuiper et al.(2004) discovered hard X-ray component above \sim10 keV from some AXPs. Here, we present the Suzaku observation of the AXP 1E 1841-045 at the center of supernova remnant Kes 73. By this observation, we could analyze the spectrum from 0.4 to 50 keV at the same time. Then, we could test whether the spectral model above was valid or not in this wide energy range. We found that there were residual in the spectral fits when fit by the model of BB + POW. Fits were improved by adding another BB or POW component. But the meaning of each component became ambiguous in the phase-resolved spectroscopy. Alternatively we found that NPEX model fit well for both phase-averaged spectrum and phase-resolved spectra. In this case, the photon indices were constant during all phase, and spectral variation seemed to be very clear. This fact suggests somewhat fundamental meaning for the emission from magnetars.Comment: To appear in the proceedings of the "40 Years of Pulsars: Millisecond Pulsars, Magnetars and More" conference, held 12-17 August 2007, in Montreal QC (AIP, in press, eds: C. Bassa, Z. Wang, A. Cumming, V. Kaspi
    corecore