1,194 research outputs found
Simulation of Lattice Polymers with Multi-Self-Overlap Ensemble
A novel family of dynamical Monte Carlo algorithms for lattice polymers is
proposed. Our central idea is to simulate an extended ensemble in which the
self-avoiding condition is systematically weakened. The degree of the
self-overlap is controlled in a similar manner as the multicanonical ensemble.
As a consequence, the ensemble --the multi-self-overlap ensemble-- contains
adequate portions of self-overlapping conformations as well as higher energy
ones. It is shown that the multi-self-overlap ensemble algorithm reproduce
correctly the canonical averages at finite temperatures of the HP model of
lattice proteins. Moreover, it outperforms massively a standard multicanonical
algorithm for a difficult example of a polymer with 8-stickers. Alternative
algorithm based on exchange Monte Carlo method is also discussed.Comment: 5 Pages, 4 Postscript figures, uses epsf.st
Positive and Negative Design in Stability and Thermal Adaptation of Natural Proteins
The aim of this work is to elucidate how physical principles of protein design are reflected in natural sequences that evolved in response to the thermal conditions of the environment. Using an exactly solvable lattice model, we design sequences with selected thermal properties. Compositional analysis of designed model sequences and natural proteomes reveals a specific trend in amino acid compositions in response to the requirement of stability at elevated environmental temperature: the increase of fractions of hydrophobic and charged amino acid residues at the expense of polar ones. We show that this “from both ends of the hydrophobicity scale” trend is due to positive (to stabilize the native state) and negative (to destabilize misfolded states) components of protein design. Negative design strengthens specific repulsive non-native interactions that appear in misfolded structures. A pressure to preserve specific repulsive interactions in non-native conformations may result in correlated mutations between amino acids that are far apart in the native state but may be in contact in misfolded conformations. Such correlated mutations are indeed found in TIM barrel and other proteins
Coarse grained description of the protein folding
We consider two- and three-dimensional lattice models of proteins which were
characterized previously. We coarse grain their folding dynamics by reducing it
to transitions between effective states. We consider two methods of selection
of the effective states. The first method is based on the steepest descent
mapping of states to underlying local energy minima and the other involves an
additional projection to maximally compact conformations. Both methods generate
connectivity patterns that allow to distinguish between the good and bad
folders. Connectivity graphs corresponding to the folding funnel have few loops
and are thus tree-like. The Arrhenius law for the median folding time of a
16-monomer sequence is established and the corresponding barrier is related to
easily identifiable kinetic trap states.Comment: REVTeX, 9 pages, 15 EPS figures, to appear in Phys. Rev.
An Analytical Approach to the Protein Designability Problem
We present an analytical method for determining the designability of protein
structures. We apply our method to the case of two-dimensional lattice
structures, and give a systematic solution for the spectrum of any structure.
Using this spectrum, the designability of a structure can be estimated. We
outline a heirarchy of structures, from most to least designable, and show that
this heirarchy depends on the potential that is used.Comment: 16 pages 4 figure
The RCK2 domain of the human BKCa channel is a calcium sensor
Large conductance voltage and Ca2+-dependent K+ channels (BKCa) are activated by both membrane depolarization and intracellular Ca2+. Recent studies on bacterial channels have proposed that a Ca2+-induced conformational change within specialized regulators of K+ conductance (RCK) domains is responsible for channel gating. Each pore-forming α subunit of the homotetrameric BKCa channel is expected to contain two intracellular RCK domains. The first RCK domain in BKCa channels (RCK1) has been shown to contain residues critical for Ca2+ sensitivity, possibly participating in the formation of a Ca2+-binding site. The location and structure of the second RCK domain in the BKCa channel (RCK2) is still being examined, and the presence of a high-affinity Ca2+-binding site within this region is not yet established. Here, we present a structure-based alignment of the C terminus of BKCa and prokaryotic RCK domains that reveal the location of a second RCK domain in human BKCa channels (hSloRCK2). hSloRCK2 includes a high-affinity Ca2+-binding site (Ca bowl) and contains similar secondary structural elements as the bacterial RCK domains. Using CD spectroscopy, we provide evidence that hSloRCK2 undergoes a Ca2+-induced change in conformation, associated with an α-to-β structural transition. We also show that the Ca bowl is an essential element for the Ca2+-induced rearrangement of hSloRCK2. We speculate that the molecular rearrangements of RCK2 likely underlie the Ca2+-dependent gating mechanism of BKCa channels. A structural model of the heterodimeric complex of hSloRCK1 and hSloRCK2 domains is discussed
Designability of lattice model heteropolymers
Protein folds are highly designable, in the sense that many sequences fold to
the same conformation. In the present work we derive an expression for the
designability in a 20 letter lattice model of proteins which, relying only on
the Central Limit Theorem, has a generality which goes beyond the simple model
used in its derivation. This expression displays an exponential dependence on
the energy of the optimal sequence folding on the given conformation measured
with respect to the lowest energy of the conformational dissimilar structures,
energy difference which constitutes the only parameter controlling
designability. Accordingly, the designability of a native conformation is
intimately connected to the stability of the sequences folding to them.Comment: in press on Phys. Rev.
Superfamily Assignments for the Yeast Proteome through Integration of Structure Prediction with the Gene Ontology
Saccharomyces cerevisiae is one of the best-studied model organisms, yet the three-dimensional structure and molecular function of many yeast proteins remain unknown. Yeast proteins were parsed into 14,934 domains, and those lacking sequence similarity to proteins of known structure were folded using the Rosetta de novo structure prediction method on the World Community Grid. This structural data was integrated with process, component, and function annotations from the Saccharomyces Genome Database to assign yeast protein domains to SCOP superfamilies using a simple Bayesian approach. We have predicted the structure of 3,338 putative domains and assigned SCOP superfamily annotations to 581 of them. We have also assigned structural annotations to 7,094 predicted domains based on fold recognition and homology modeling methods. The domain predictions and structural information are available in an online database at http://rd.plos.org/10.1371_journal.pbio.0050076_01
The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: a randomized, controlled trial.
Cocoa supplementation has been associated with benefits to cardiovascular health. However, cocoa\u27s effects on cognition are less clear. A randomized, placebo-controlled, double-blind clinical trial (n = 40, age M = 24.13 years, SD = 4.47 years) was conducted to investigate the effects of both acute (same-day) and sub-chronic (daily for four-weeks) 250 mg cocoa supplementation on mood and mental fatigue, cognitive performance and cardiovascular functioning in young, healthy adults. Assessment involved repeated 10-min cycles of the Cognitive Demand Battery (CDB) encompassing two serial subtraction tasks (Serial Threes and Sevens), a Rapid Visual Information Processing task, and a mental fatigue scale over the course of half an hour. The Swinburne University Computerized Cognitive Assessment Battery (SUCCAB) was also completed to evaluate cognition. Cardiovascular function included measuring both peripheral and central blood pressure and cerebral blood flow. At the acute time point, consumption of cocoa significantly improved self-reported mental fatigue and performance on the Serial Sevens task in cycle one of the CDB. No other significant effects were found. This trial was registered with the Australian and New Zealand Clinical Trial Registry (Trial ID: ACTRN12613000626763). Accessible via http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12613000626763&ddlSearch=Registered
Reply to Comment on "Criterion that Determines the Foldability of Proteins"
We point out that the correlation between folding times and in protein-like heteropolymer models where
and are the collapse and folding transition temperatures
was already established in 1993 before the other presumed equivalent criterion
(folding times correlating with alone) was suggested. We argue that the
folding times for these models show no useful correlation with the energy gap
even if restricted to the ensemble of compact structures as suggested by
Karplus and Shakhnovich (cond-mat/9606037).Comment: 6 pages, Latex, 2 Postscript figures. Plots explicitly showing the
lack of correlation between folding time and energy gap are adde
- …