92 research outputs found

    Pliocene-Pleistocene marine cyclothems, Wanganui Basin, New Zealand: a lithostratigraphic framework

    Get PDF
    The Rangitikei River valley between Mangaweka and Vinegar Hill and the surrounding Ohingaiti region in eastern Wanganui Basin contains a late Pliocene to early Pleistocene (c. 2.6-1.7 Ma), c. 1100 m thick, southward-dipping (4-9deg.), marine cyclothemic succession. Twenty sedimentary cycles occur within the succession, each of which contains coarse-grained (siliciclastic sandstone and coquina) and fine-grained (siliciclastic siltstone) units. Nineteen of the cycles are assigned to the Rangitikei Group (new). Six new formations are defined within the Rangitikei Group, and their distribution in the Ohingaiti region is represented in a new geologic map. The new formations are named: Mangarere, Tikapu, Makohine, Orangipongo, Mangaonoho, and Vinegar Hill. Each formation comprises one or more cyclothems and includes a previously described and named distinctive basal horizon. Discrete sandstones, siltstones, and coquinas within formations are assigned member status and correspond to systems tracts in sequence stratigraphic nomenclature. The members provide the link between the new formational lithostratigraphy and the sequence stratigraphy of the Rangitikei Group. Base of cycle coquina members accumulated during episodes of sediment starvation associated with stratigraphic condensation on an open marine shelf during sea-level transgressions. Siltstone members accumulated in mid-shelf environments (50-100 m water depth) during sea-level highstands, whereas the overlying sandstone members are ascribed to inner shelf and shoreface environments (0-50 m water depth) and accumulated during falling eustatic sea-level conditions. Repetitive changes in water depth of 50-100 m magnitude are consistent with a glacio-eustatic origin for the cyclothems, which correspond to an interval of Earth history when successive glaciations in the Northern Hemisphere are known to have occurred. Moreover, the chronology of the Rangitikei River section indicates that Rangitikei Group cyclothems accumulated during short duration, 41 ka cycles in continental ice volume attributed to the dominance of the Milankovitch obliquity orbital parameter. The Ohingaiti region has simple postdepositional structure. The late Pliocene formations dip generally to the SSW between 4deg. and 9deg.. Discernible discordances of c. 1deg. between successively younger formations are attributed to synsedimentary tilting of the shelf concomitant with migration of the tectonic hingeline southward into the basin. The outcrop distribution of the Rangitikei Group is strongly influenced by this regional tilt and also by three major northeast-southwest oriented, high-angle reverse faults (Rauoterangi, Pakihikura, and Rangitikei Faults)

    Quantifying the rate and depth dependence of bioturbation based on optically-stimulated luminescence (OSL) dates and meteoric (10)Be

    Get PDF
    Article first published online: 16 JAN 2014Both the rate and the vertical distribution of soil disturbance modify soil properties such as porosity, particle size, chemical composition and age structure; all of which play an important role in a soil's biogeochemical functioning. Whereas rates of mixing have been previously quantified, the nature of bioturbation's depth dependence remains poorly constrained. Here we constrain, for the first time, the relationship between mixing rate and depth in a bioturbated soil in northeast Queensland, Australia using a novel method combining OSL (optically-stimulated luminescence) ages and meteoric beryllium-10 (10Be) inventories. We find that the best fit mixing rate decreases non-linearly with increasing soil depth in this soil and the characteristic length scale of 0.28 m over which the mixing coefficient decays is comparable to reported rooting depth coefficients. In addition we show that estimates of surface mixing rates from OSL data are highly dependent on erosion rate and that erosion rate must be constrained if accurate mixing rates are to be quantified. We calculate surface diffusion-like mixing coefficients of 1.8 × 10−4 and 2.1 × 10−4 m2 yr−1 for the studied soil for two different estimates of soil erosion.Michelle O. Johnson, Simon M. Mudd, Brad Pillans, Nigel A. Spooner, L. Keith Fifield, Mike J. Kirkby and Manuel Gloo

    A High Throughput Screen Identifies Nefopam as Targeting Cell Proliferation in β-Catenin Driven Neoplastic and Reactive Fibroproliferative Disorders

    Get PDF
    Fibroproliferative disorders include neoplastic and reactive processes (e.g. desmoid tumor and hypertrophic scars). They are characterized by activation of β-catenin signaling, and effective pharmacologic approaches are lacking. Here we undertook a high throughput screen using human desmoid tumor cell cultures to identify agents that would inhibit cell viability in tumor cells but not normal fibroblasts. Agents were then tested in additional cell cultures for an effect on cell proliferation, apoptosis, and β-catenin protein level. Ultimately they were tested in Apc1638N mice, which develop desmoid tumors, as well as in wild type mice subjected to full thickness skin wounds. The screen identified Neofopam, as an agent that inhibited cell numbers to 42% of baseline in cell cultures from β-catenin driven fibroproliferative disorders. Nefopam decreased cell proliferation and β-catenin protein level to 50% of baseline in these same cell cultures. The half maximal effective concentration in-vitro was 0.5 uM and there was a plateau in the effect after 48 hours of treatment. Nefopam caused a 45% decline in tumor number, 33% decline in tumor volume, and a 40% decline in scar size when tested in mice. There was also a 50% decline in β-catenin level in-vivo. Nefopam targets β-catenin protein level in mesenchymal cells in-vitro and in-vivo, and may be an effective therapy for neoplastic and reactive processes driven by β-catenin mediated signaling

    Characteristic Metabolism of Free Amino Acids in Cetacean Plasma: Cluster Analysis and Comparison with Mice

    Get PDF
    From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms) since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaption used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future
    corecore