34,439 research outputs found

    Error Filtration and Entanglement Purification for Quantum Communication

    Full text link
    The key realisation which lead to the emergence of the new field of quantum information processing is that quantum mechanics, the theory that describes microscopic particles, allows the processing of information in fundamentally new ways. But just as in classical information processing, errors occur in quantum information processing, and these have to be corrected. A fundamental breakthrough was the realisation that quantum error correction is in fact possible. However most work so far has not been concerned with technological feasibility, but rather with proving that quantum error correction is possible in principle. Here we describe a method for filtering out errors and entanglement purification which is particularly suitable for quantum communication. Our method is conceptually new, and, crucially, it is easy to implement in a wide variety of physical systems with present day technology and should therefore be of wide applicability.Comment: 23 pages (latex) and 4 postscript figure

    Fermionization, Number of Families

    Full text link
    We investigate bosonization/fermionization for free massless fermions being equivalent to free massless bosons with the purpose of checking and correcting the old rule by Aratyn and one of us (H.B.F.N.) for the number of boson species relative to the number of fermion species which is required to have bosonization possible. An important application of such a counting of degrees of freedom relation would be to invoke restrictions on the number of families that could be possible under the assumption, that all the fermions in nature are the result of fermionizing a system of boson species. Since a theory of fundamental fermions can be accused for not being properly local because of having anticommutativity at space like distances rather than commutation as is more physically reasonable to require, it is in fact called for to have all fermions arising from fermionization of bosons. To make a realistic scenario with the fermions all coming from fermionizing some bosons we should still have at least some not fermionized bosons and we are driven towards that being a gravitational field, that is not fermionized. Essentially we reach the spin-charge-families theory by one of us (N.S.M.B.) with the detail that the number of fermion components and therefore of families get determined from what possibilities for fermionization will finally turn out to exist. The spin-charge-family theory has long been plagued by predicting 4 families rather than the phenomenologically more favoured 3. Unfortunately we do not yet understand well enough the unphysical negative norm square components in the system of bosons that can fermionize in higher dimensions because we have no working high dimensional case of fermionization. But suspecting they involve gauge fields with complicated unphysical state systems the corrections from such states could putatively improve the family number prediction.Comment: 30 pages, H.B. Nielsen presented the talk at 20th20^{\rm{th}} Workshop "What Comes Beyond the Standard Models", Bled, 09-17 of July, 201

    A study of ingestion and dispersion of engine exhaust products in trailing vortex systems

    Get PDF
    Analysis has been made of the ingestion and dispersion of engine exhaust products into the trailing vortex system of supersonic aircraft flying in the stratosphere. The rate of mixing between the supersonic jet and the co-flowing supersonic stream was found to be an order of magnitude less than would be expected on the basis of subsonic eddy-viscosity results. The length of the potential core was 66 nozzle exit radii so that the exhaust gases remain at elevated temperatures and concentrations over much longer distances than previsously estimated. Ingestion started at the end of the potential core and all hot gas from the engine was ingested into the trailing vortex within two core lengths. Comparison between the buoyancy calculations for the supersonic case with nondimensionalized subsonic aircraft contrail data on wake spreading showed good agreement. Velocity and temperature profiles have been specified at various stages of the wake, and the analysis in this report can be used to predict variations of concentrations of species such as nitrogen oxides under conditions of chemical reaction

    Teleportation of two-mode squeezed states

    Full text link
    We consider two-mode squeezed states which are parametrized by the squeezing parameter and the phase. We present a scheme for teleporting such entangled states of continuous variables from Alice to Bob. Our protocol is operationalized through the creation of a four-mode entangled state shared by Alice and Bob using linear amplifiers and beam splitters. Teleportation of the entangled state proceeds with local operations and the classical communication of four bits. We compute the fidelity of teleportation and find that it exhibits a trade-off with the magnitude of entanglement of the resultant teleported state.Comment: Revtex, 5 pages, 3 eps figures, accepted for publication in Phys. Rev.

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe
    • …
    corecore