3,078 research outputs found

    Socio-Economic Impact of the Creation and Operation of Mega-Science Projects

    Get PDF
    Challenges of development facing society and states require efforts consolidation, in the research field in particular. Therefore, to organize international cooperation and to conduct basic and applied research, mega-science infrastructures are being created and implemented all over the world. Currently, research facilities of the mega-science class are being created in the Russian Federation. They play an important role in the development of science and the innovation process. The competitiveness of Russian science is a determining factor for ensuring the safety and technological independence of Russia. Therefore, the Federal program for the development of Synchrotron and Neutron research and research infrastructure for 2019-2027 was approved in March 2020. In the present article, the concept of the socio-economic impact of the operation of large-scale research infrastructure is revealed. The authors refer to the materials on the socio-economic impact analysis, which was based on the data on the Swedish neutron source (European Spallation Source). The article provides a generalized idea of the main indicators for assessing the potential of the research infrastructure as well as their application to characterize the research facilities in the Russian Federation. It is worth highlighting that each large research facility is unique and it is not possible to unify the analysis of the socio-economic impact. However, the obtained results can be used for a similar analysis of research infrastructures, based on the same physical principles and created to solve general scientific problems

    Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study

    Get PDF
    Numerical study of the one-dimensional Frenkel Hamiltonian with on-site randomness is carried out. We focus on the statistics of the energy levels near the lower exciton band edge, i. e. those determining optical response. We found that the distribution of the energy spacing between the states that are well localized at the same segment is characterized by non-zero mean, i.e. these states undergo repulsion. This repulsion results in a local discrete energy structure of a localized Frenkel exciton. On the contrary, the energy spacing distribution for weakly overlapping local ground states (the states with no nodes within their localization segments) that are localized at different segments has zero mean and shows almost no repulsion. The typical width of the latter distribution is of the same order as the typical spacing in the local discrete energy structure, so that this local structure is hidden; it does not reveal itself neither in the density of states nor in the linear absorption spectra. However, this structure affects the two-exciton transitions involving the states of the same segment and can be observed by the pump-probe spectroscopy. We analyze also the disorder degree scaling of the first and second momenta of the distributions.Comment: 10 pages, 6 figure

    Isotope shifts of the 2p3/2p_{3/2}-2p1/2p_{1/2} transition in B-like ions

    Full text link
    Isotope shifts of the 2p3/2p_{3/2}-2p1/2p_{1/2} transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2p3/2p_{3/2}-2p1/2p_{1/2} transition in B-like ions is significantly improved.Comment: arXiv admin note: text overlap with arXiv:1410.707

    Simulation of interaction of oriented J aggregates with resonance laser radiation

    Get PDF
    The interaction of laser radiation with single J aggregates of cyanine dyes is theoretically analyzed and numerically simulated. The quantum mechanical calculations of the equilibrium geometry and the energies and intensities of the lowest singlet electronic transitions in pseudoisocyanine chloride and its linear (chain) oligomers are fulfilled. The data of these calculations can serve as parameters of the analyzed model of interaction of J aggregates with radiation in the oneparticle density matrix approximation. This model takes into account relaxation processes, the annihilation of excitations at neighboring molecules, and inho mogeneous broadening. Assuming that the inhomogeneous broadening is absent, calculations demonstrate the existence of spatial bistability, molecular switching waves, and dissipative solitons. The effect of the inhomogeneous broadening and the radiation intensity on the effective coherence length in linear (chain) J aggregates is analyzedComment: 8 pages, 8 figure

    Giant negative magnetoresistance in semiconductors doped by multiply charged deep impurities

    Get PDF
    A giant negative magnetoresistance has been observed in bulk germanium doped with multiply charged deep impurities. Applying a magnetic field the resistance may decrease exponentially at any orientation of the field. A drop of the resistance as much as about 10000% has been measured at 6 T. The effect is attributed to the spin splitting of impurity ground state with a very large g-factor in the order of several tens depending on impurity.Comment: 4 pages, 4 figure

    Cooperative Emission from an Ensemble of Three-Level Λ Radiators in a Cavity:An Insight from the Viewpoint of Dynamics of Nonlinear Systems

    Get PDF
    Cooperative radiation emitted by an ensemble of three-level optical systems with a doublet in the ground state (Λ scheme), which is placed into a cyclic cavity, is studied theoretically. In contrast to the twolevel model of emitters, this process with such a configuration of operating transitions may occur without population inversion in the whole, if the doublet is prepared at the initial instant in a superposition (coherent) state. In the ideal case of a Hamilton system, in which the cavity losses and relaxation in the radiator ensemble are disregarded, the conservation laws are derived, which allow a substantial reduction of the dimension of the phase space of the model (ℝ11 → ℝ5) and the application of methods of dynamics of nonlinear systems for analyzing the three-level superradiance under these conditions. The possibility of different (both quasiperiodic and chaotic) scenarios of the three-level superradiance is demonstrated on the basis of Poincaré’s mappings. Global bifurcation of the system upon a transition from the conventional superradiance regime to inversionless one is revealed. The effects of cavity losses, as well as homogeneous and inhomogeneous broadening in the system of radiators on the regularities found are also discussed

    Effects of turbulent mixing on critical behaviour in the presence of compressibility: Renormalization group analysis of two models

    Full text link
    Critical behaviour of two systems, subjected to the turbulent mixing, is studied by means of the field theoretic renormalization group. The first system, described by the equilibrium model A, corresponds to relaxational dynamics of a non-conserved order parameter. The second one is the strongly non-equilibrium reaction-diffusion system, known as Gribov process and equivalent to the Reggeon field theory. The turbulent mixing is modelled by the Kazantsev-Kraichnan "rapid-change" ensemble: time-decorrelated Gaussian velocity field with the power-like spectrum k^{-d-\xi}. Effects of compressibility of the fluid are studied. It is shown that, depending on the relation between the exponent \xi and the spatial dimension d, the both systems exhibit four different types of critical behaviour, associated with four possible fixed points of the renormalization group equations. The most interesting point corresponds to a new type of critical behaviour, in which the nonlinearity and turbulent mixing are both relevant, and the critical exponents depend on d, \xi and the degree of compressibility. For the both models, compressibility enhances the role of the nonlinear terms in the dynamical equations: the region in the d-\xi plane, where the new nontrivial regime is stable, is getting much wider as the degree of compressibility increases. In its turn, turbulent transfer becomes more efficient due to combined effects of the mixing and the nonlinear terms.Comment: 25 pages, 4 figure

    First Results of Magnetic Field Penetration Measurements of Multilayer SIS Structures

    Get PDF
    The performance of superconducting RF cavities made of bulk Nb is limited by a breakdown field of Bp ≈200 mT, close to the superheating field for Nb. A potentially promising solution to enhance the breakdown field of the SRF cavities beyond the intrinsic limits of Nb is a multilayer coating suggested in [1]. In the simplest case, such a multilayer may be a superconductor-insulator-superconductor (S-I-S) coating, for example, bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of another superconductor (S) which could be e.g. dirty niobium [2]. Here we report the first results of our measurements of field penetration in Nb thin films and Nb-AlN-Nb multilayer samples at 4.2 K using the magnetic field penetration facility designed, built and tested in ASTeC
    corecore