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Abstract—Cooperative radiation emitted by an ensemble of three-level optical systems with a doublet in the
ground state (Λ scheme), which is placed into a cyclic cavity, is studied theoretically. In contrast to the two-
level model of emitters, this process with such a configuration of operating transitions may occur without
population inversion in the whole, if the doublet is prepared at the initial instant in a superposition (coherent)
state. In the ideal case of a Hamilton system, in which the cavity losses and relaxation in the radiator ensemble
are disregarded, the conservation laws are derived, which allow a substantial reduction of the dimension of
the phase space of the model (ℝ11 → ℝ5) and the application of methods of dynamics of nonlinear systems
for analyzing the three-level superradiance under these conditions. The possibility of different (both quasi-
periodic and chaotic) scenarios of the three-level superradiance is demonstrated on the basis of Poincaré’s
mappings. Global bifurcation of the system upon a transition from the conventional superradiance regime to
inversionless one is revealed. The effects of cavity losses, as well as homogeneous and inhomogeneous broad-
ening in the system of radiators on the regularities found are also discussed.

DOI: 10.1134/S1063776117050053

1. INTRODUCTION

Sixty years ago, Dicke [1] predicted that a system of
two-level atoms prepared at the initial instant in the
excited state can emit collectively owing to correlation
of emitters by the field of their own radiation. This
phenomenon was later called coherent spontaneous
emission (Dicke superradiance, SR). Dicke [1] con-
sidered a system with a linear size smaller than the
radiation wavelength. In the 1970s (15 years after the
SR prediction), Dicke investigations were further
developed and generalized to extended systems in
which SR exhibits peculiar properties [2–6]. Skrib-
anowitz, Herman, MacGillivray, and Feld were the
first to demonstrate in 1973 this effect experimentally
on rotational transitions in the HF gas (see also [7–
9]). Later, SR was observed in the solid phase [10–15],
in spin systems [16–23], in generation of metastable
states [24], in mesoscopic objects [25], in plasmon
structures [26–28], and even in neutrino mass spec-
troscopy [29]. In should be noted in addition that
Rayleigh scattering of light by a Bose–Einstein con-

densate of cold atoms is also of the SR origin [30–33],
because the condensate preexists in the coherent state.

It is well known that the necessary condition for SR
[1] to occur is the existence of initial population inver-
sion of the transition levels [2–6, 34–39]. In the case
of multilevel emitters (in particular, three level atoms
with the Λ scheme of operating transitions considered
here), this limitation is not necessary: SR is possible
even when the initial population of the upper level is
smaller than the population of the doublet (inversion-
less SR) [40–50]. A prototype of SR without the pop-
ulation inversion is the inversionless gain predicted for
the first time in [51–53] (see also a review [54]). The
essence of the effect can be described as follows. If the
initial state of the lower doublet is prepared in the form
of a coherent superposition, the transition to which
from the upper state is forbidden, the orthogonal to it
superposition, the transition to which is allowed, is
found to be unpopulated in this case. Then the transi-
tion from the upper level to this superposition state
turns out to be inverted for an arbitrarily small popula-
tion of the upper level. This model was considered for
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the first time in [40–42] and later on (in greater detail)
in [43], where it was found that the three-level SR
exhibits various dynamic (even chaotic) regimes
depending on the population of the upper level and
doublet splitting. An attempt was made to interpret the
detected regimes, but regular analysis has not been
carried out.

The goal of the present work is to investigate theo-
retically the nonlinear dynamics of SR from an ensem-
ble of three-level Λ atoms in a high-Q cyclic cavity,
using consistently the dynamic theory of nonlinear
systems (the model of the system and the formalism of
its description are considered in Section 2). The main
part of this research is devoted to the analysis of the
conservative (Hamiltonian) model in which the relax-
ation of the population and electric polarization, asso-
ciated with other (except SR) processes as well as the
resonator losses are disregarded. The conservative
nature of the system is manifested in the existence of
integrals of motion, which (together with the special
choice of initial conditions) make it possible to sub-
stantially reduce the dimension of the phase space of
the model under investigation (ℝ11 → ℝ5, Section 3).

Our attention is mainly focused on analysis of the
system with a nondegenerate doublet. The case with a
degenerate doublet was investigated in detail in our
previous publication [45]. We derive the equation for
the SR field strength, which determines the stationary
points of the system in the ℝ5 phase space. The explicit
form of this equation has made it possible to carry out
the two-parametric (in parameters α and δ, where α is
the initial population of the third level and δ is the
doublet splitting) classification of these points and to

determine range of their existence. It is shown that sta-
tionary points lie in the 3D subspace of the five-
dimensional phase space, {A ∈ ℝ3} ⊆ ℝ5 (Section 4).
The possibility of existence of quasi-periodic as well as
chaotic regimes of three-level SR is demonstrated. In
addition, the global bifurcation of the system upon a
transition from the regime of conventional SR to the
regime of SR without population inversion is revealed
(Section 5). The mechanism driving the dynamic sys-
tem to chaos and associated with a periodic approach
of the system’s phase trajectory to the separatrix where
the conditions for a transition of the system to a qual-
itatively new phase trajectory occur, is considered in
Section 6. Possible scenarios of system’s randomiza-
tion are also discussed. In the concluding part of this
article (Section 7), we consider the effects of cavity
losses as well as homogeneous and inhomogeneous
broadening in the system of emitters on the possibility
of realization of the regimes of three-level SR found
and propose real-word systems in which such regimes
can be observed.

2. MODEL AND FORMALISM

We consider an ensemble of three-level atoms with
a Λ scheme of operating transitions (Fig. 1), which are
distributed uniformly along one of the arms of a high-
Q cyclic cavity. We disregard the effect of the active
medium on the intrinsic cavity modes (i.e., we restrict
our analysis to a so-called empty-cavity approxima-
tion). The search for modes of a cavity with an active
medium is generally a complicated problem which is
beyond the scope of this work. Optical transitions
between upper state 3 and states 1 and 2 of the doublet
are assumed to be allowed. The corresponding dipole
moments d31 and d32 are likely being real-valued for
simplicity. Optical transition frequencies ω31 and ω32
are considered to be distributed in a certain interval
near their mean values  and  in accordance with
the distribution functions g31(ω) and g32(ω) (inhomo-
geneous broadening). The transitions between the lev-
els of the doublet are not considered, and doublet
splitting frequency ω21 is assumed to be much smaller
than frequencies ω31 and ω32. For simplicity, we adopt
that it is fixed and equal to  – . This implies that
frequencies  and  are shifted symbately (are cor-
related), and the distributions g31(ω) and g32(ω) are
identical, but centered at frequencies  and ,
respectively. We do not consider the case of uncor-
related inhomogeneous broadening of the optical
transition frequencies, which also leads to a inhomo-
geneous broadening of the doublet.

Optical dynamics of an isolated Λ atom is described
by the density matrix ρmn (where m, n = 1, 2, 3), while
the electric field strength E is governed by the Maxwell
equation. In addition, all vectors (transition dipole
moments and field polarization) are assumed to be

ω31 ω32

ω31 ω32

ω31 ω32

ω31 ω32

Fig. 1. Energy level diagram for a Λ emitter. Line number
(n = 1, 2, 3) corresponds to the state of the emitter with
energy En. Double arrows denote allowed transitions
between the emitter levels, characterized by frequencies
ω31 and ω32 and dipole moments d31 and d32 of the corre-
sponding transitions; ω21 is the frequency of splitting of the
doublet, the transition between the states of which is not
considered.

3

1
2

d31

ω31

ω21

ω32

d32
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codirectional and perpendicular to the axis of the sys-
tem. Then the evolution of the atom + field system
obeys the following (1D) system of the Maxwell–
Bloch equations:

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

Here, T1 and T2 are the relaxation times for population
and coherence, respectively; 1/T2 = 1/(2T1) + 1/ ,

 being the coherence relaxation time that is not
associated with the population relaxation; N is the
concentration of active atoms in the substance; c is the
speed of light in vacuum; and P is the polarization of
the medium (dipole moment per unit volume), which
is defined as

(2)

We have omitted for brevity the dependences of all
functions in Eqs. (1) and (2) on coordinate, time, and
frequency. The initial conditions for the density matrix
elements and the field are given in the next section.

Let us further assume that frequencies ω31 and ω32
are quasi-resonant to one of cavity modes ωc, and the
SR spectrum does not exceed the gap between its
modes; i.e., we restrict our analysis to the single-mode
approximation. For simplifying the problem still fur-
ther, we disregard the dependence of all dynamic vari-
ables on the spatial coordinate (mean field approxi-
mation). This approximation can be justified provided
that a wave propagating in one direction is excited, and
the time of the round trip of light over the cavity is
much shorter than the SR characteristic time [43]. We

ρ = ρ + ρ − ρ
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will seek the solution to system of equations (1) in the
form

(3)

where the amplitudes of the field  and off-diagonal
elements  and  of the density matrix (hence-
forth referred to as high-frequency coherences) are the
functions slowly varying on the scale of the optical
period 2π/ωc (rotating wave approximation). It should
be noted that no analogous assumption concerning
low-frequency coherence ρ21 (on scale of 2π/ω21) is
used. For definiteness, we assume that the eigenfre-
quency ωc of the cavity is centered between frequen-
cies  and  (i.e., ωc = (  + )/2).

We also assume that the dipole moments of optical
transitions are identical, d31 = d32 = d (this approxima-
tion is not of principal importance). Note that the
given problem is characterized by a quantity Ω =

, which is known in the literature as the
cooperative frequency [38, 55] and determines the
natural scales of time and field. Its physical meaning is
that it is the Rabi frequency of the field with a number
of photons equal to the number of atoms in the system
[55]. Introducing dimensionless time τ = Ωt, relax-
ation constants τi = ΩTi (i = 1, 2), and the field ampli-
tude  = –id /( ) and passing in the standard
manner from Eqs. (1) to an analogous system for the
slowly varying amplitudes, we obtain

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

Here, Δ = (ω31 – )/Ω = (ω32 – )/Ω is the
dimensionless detuning of optical transition frequen-
cies from their mean values, δ = ω21/Ω is the dimen-
sionless frequency of doublet splitting, and τres = ΩTres
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is the dimensionless lifetime of the field in the cavity.
This constant effectively takes into account the cavity
losses in the mean field approximation [56].

3. HAMILTONIAN SYSTEM
Let us first consider in detail an ideal Hamiltonian

system without relaxation in the system of emitters and
with zero cavity losses: T1 = T2 = Tres = ∞, g13(ω) =
δ(ω – ), and g32(ω) = δ(ω – ). The effect of
these factors will be considered in the end of the arti-
cle. In this case, the system of equations (4) has the
following integrals of motion:

(5a)

(5b)

(5c)
the first of which expresses the conservation law of the
normalization and also holds in the general case in the
presence of relaxation (homogeneous and inhomoge-
neous broadenings) and cavity losses. The second
expression is just the conservation law for the trace of
the density matrix squared. The interpretation of the
last expression (5c) is not so obvious, although it
resembles the conservation law for the excitation
energy of the system. The existence of these integrals
of motion makes it possible to substantially simplify
analysis of the dynamics of three-level SR.

It should be emphasized that the Hamiltonian limit
is fundamental and makes it possible to analyze sta-
tionary states of the system (see Section 4); it would
hardly be possible to explain the optical dynamics of
the system in the presence of relaxation (incoherent
perturbations) without analyzing this limit. The allow-
ance for any relaxation leads to violation of one of con-
servation laws (5) (see Section 7), thus increasing the
dimension of the phase space and extremely compli-
cating such analysis or even making it impossible. In
such a case, the system of equations (4) has to be inte-
grated numerically taking the relaxation into account,
and its solution must be compared with the ideal
(Hamiltonian) case (this will be done in Section 7). In
this way, certain conclusions can be drawn concerning
the optical dynamics of the system with relaxation and
the time intervals, on which the Hamiltonian limit is
observed, can be indicated.

As compared with two-level SR [37, 38], the
scheme with a doublet in the ground state (three-level
SR) introduces new effects in the response of the sys-
tem, which are generated by the competition of transi-
tions |3〉 ↔ |1〉 and |3〉 ↔ |2〉. For this reason, we choose
the initial conditions for investigating the nonlinear
dynamics of three-level SR in such a way that the
interaction in the atoms + field system occurs most
effectively (namely, for any initial population of the
upper state and with the minimal delay of the SR
pulse). In this connection, we note that Eqs. (4d) and

ω31 ω32

ρ + ρ + ρ =11 22 33 1,

ρ + ρ + ρ + ρ + + =2 2 2 2 2 2
11 22 33 21 31 322(| | | | | | ) const,5 5

+ ρ =2
33| | const,%

(4e) for the high-frequency coherences (531 and 532)
contain the terms proportional to the low-frequency
coherence ρ21. Herewith, if ρ21(0) ≠ 0, the evolution of
initial f luctuations 531 and 532 (decrease or increase)
depends on the phase of ρ21(0). For positive values of
ρ21(0), these f luctuations decrease, while for negative
values, the f luctuations grow in an avalanche manner,
thus initiating SR. From the standpoint of macro-
scopic electrodynamics, this indicates dissipative
instability of the system [36]. It should be emphasized
that this becomes possible for any difference of popu-
lations in the 3 ↔ 1 and 3 ↔ 2 channels and is ensured
by the transformation of the low-frequency coherence
ρ21(0) into the high-frequency coherences 531 and
532. The latter fact is ref lected explicitly in the integral
of motion (5b).

The pattern of formation of the SR dynamics of the
given Λ system appears as especially clear in the new
(collective) basis of states |3〉, |+〉 = (|1〉 + |2〉)/ , |–〉 =
(|1〉 – |2〉)/  [41, 43, 46, 48]. The transformation of
the density matrix elements from the old basis to the
new one is performed by the following relations:

(6a)

(6b)

(6c)

(6d)

(6e)

where ρ++ and ρ– – are the populations of the optically
active (bright) and passive (dark) states; respectively;
ρ+– is the low-frequency coherence; and 53+ and 53–
are the high-frequency coherences of the correspond-
ing optical channels.

The relation (6a) for the population of the bright
state ρ++ shows that the condition for the existence of
inversionless three-level SR is the presence of inver-
sion in the active channel |3〉 ↔ |+〉; i.e., an inequality
ρ33(0) > ρ++(0) must be satisfied at the initial instant.
In the ideal case when the population of the bright
state is zero,

the following conditions must be met:

(7)

where ρ33(0) = α and 0 < α ≤ 1 as before. We will
henceforth say that the doublet is prepared in the max-
imally coherent state if the conditions (7) are satisfied

2
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at the initial instant. It should be emphasized once
again that for the given initial conditions, SR is possi-
ble for any initial population ρ33(0) of the upper state,
even without inversion in the whole, when the total
initial population of the doublet exceeds the initial
population of the upper level (ρ11(0) + ρ22(0) > ρ33(0)).

In the quantum-electrodynamic formulation of SR
as a spontaneous process, the field and mean dipole
moments are absent. Emission from the system is ini-
tiated by quantum fluctuations of the uncorrelated
dipole moments of emitters. Phasing of the emitters
occurs in the course of radiation. The semiclassical
analog of this initial state consists in setting small ran-
dom values of the amplitudes of high-frequency
coherences 531(0) and 532(0) with certain correlation
properties [57]. Another variant of the SR initiation
involves applying a short (on the SR scale) small-area
pulse that produces the deterministic and identical
values of the amplitudes of high-frequency coherences
531(0) and 532(0) at each emitter, which exceed their
quantum fluctuations (so-called triggered or induced
SR [58, 59]). We will henceforth consider the second
scheme of SR excitation. Thus, the initial conditions
in the problem under investigation have the following
form: the electric field strength is zero,

(8)
and a small uniform value of high-frequency coher-
ences is set,

(9)

where we assume without loss of generality that
Im[531(0)] = Im[532(0)] = 0.

We have integrated numerically the system of dif-
ferential equations (4) with the initial conditions (7)–
(9) by varying two control parameter, viz., the initial
population ρ33(0) = α of the upper level and the fre-
quency of doublet splitting δ. This has revealed a num-
ber of interesting regularities in the temporal dynamics
of the SR field and the atomic subsystem. Figure 2
shows a typical example of such calculations for δ ! 1
(ω21 ! Ω). It can be seen that the real part of the SR
electric field amplitude (Fig. 2b) exhibits temporal
dynamics {Re[%(τ)] ≠ 0), while its imaginary part
(Fig. 2c) does not evolve in time (Im[%(τ)] = 0). The
real parts of the high-frequency coherences
Re[531(τ)] (Fig. 2d) and Re[532(τ)] (Fig. 2m) behave
identically, while their imaginary parts Im[531(τ)]
(Fig. 2f) and Im[532(τ)] (Fig. 2n) exhibit the anti-
phase behavior. Accordingly, the squares of their mod-
uli evolve identically, |531|2 = |532|2 (see Figs. 2d
and 2l). The dynamics of populations ρ11(τ) (Fig. 2g)
and ρ22(τ) (Fig. 2o) are identical and repeat the
dynamics of the SR field intensity |%|2 (Fig. 2a).
It should be noted that these regularities are the con-
sequences of the initial conditions (7)–(9) and are

= =Re[ (0)] Im[ (0)] 0,% %

= = ±
�

31 32 0

0

Re[ (0)] Re[ (0)] ,
1,

R

R

5 5

realized for any physically realistic parameters α and δ.
This allows us to considerably simplify the mathemat-
ical analysis of the problem under investigation.

We pay attention to the fact that the cooperative
radiation signal represents a quasi-periodically (or
chaotically) repeating comb of peaks (trains) with a
characteristic repetition time on the order of the
period 2π/δ (2π/ω21) of the low-frequency coherence
oscillations. This is due to the fact that for a nonzero
doublet splitting (δ ≠ 0), states |+〉 and |–〉 are not sta-
tionary anymore because with time the bright state is
periodically transformed to the dark state. The aperi-
odicity of train repetition is associated with the effect
of population trapping [41] (a part of population of the
lower level is trapped into the dark state that does not
interact with the upper state). For a strong doublet
splitting δ @ 1 (ω21 @ Ω), the SR dynamics consists of
periodically repeating peaks of duration Ω–1, which
are modulated with the doublet splitting frequency ω21
[41].

Here it is appropriate to distinguish between the
standard Dicke SR and cooperative emission from an
ensemble of three-level Λ radiators in a high-Q cavity
considered here. Starting from the Dicke state, our
system generally does not return to it, although may
approach this state. The exceptions are the limits of a
degenerate doublet (ω21 = 0), a strongly nondegener-
ate doublet (ω21 @ Ω) [41], and a quasi-periodic
regime (for ω21 < Ω and α = 1). In the dynamic chaos
regime (for ω21 ! Ω and α < 1), the behavior of the
system after its start is determined by the current state
of the field and the system of emitters. The emission
dynamics loses its “spontaneous” character. The
phase portrait of the system in this case is an entangled
open trajectory, and its spectrum resembles white
noise (see Sections 5 and 6).

Introducing the notations

(10a)

(10b)

(10c)

we can transform the system of differential equa-
tions (4) into the following form:
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Therefore, the relations (10) ensure the reduction of
our model from the complex-valued to the real-valued
domain. As a consequence, the initial phase space ℝ11

of the model (4) is fully mapped into ℝ5 (11). In addi-
tion, taking into account the relations (5c) and (10),
the integral of motion (5b) takes the form

(12)

It should be emphasized that this conservation law
limits the domain of phase trajectories of the system
and determines a closed hypersurface in the phase
space ( , ξ, ζ, η, χ), outside of which the system of
equations (11) has no solution for any values of param-
eters α and δ. This allows us to characterize the SR

α − − α −
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= α α − + +

2 2 2

2 2 2 2
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3( ) ( )
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1const 2 ( 1) 4 .
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e e

e

process as being stable in the Lagrange sense (see, for
example, [60]). The canonical form of this hypersur-
face is defined by the equation

(13)

Its topological features depend on the sign of constant
γ. For values 1/3 < α ≤ 1 (i.e., for γ > 0), this is a five-
dimensional dumbbell with the symmetry axis . If 0 <
α ≤ 1/3 (i.e., γ < 0), the hypersurface is a 5D ellipsoid.

4. STATIONARY POINTS
As mentioned above, the main object of our inter-

est is a nondegenerate doublet (δ ≠ 0) because the
model under investigation demonstrates nontrivial
dynamics precisely in this case (see [43]). First of all, we
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= α − γ + γ = α −
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2 2
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4 1const ( 2 ), .
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Fig. 2. Dynamics of the SR field strength %, its intensity |%|2, and the density matrix elements ρmn of the Hamiltonian system,
calculated for the doublet splitting δ = 0.05 (in units of Ω) and the initial conditions ρ33(0) = α = 0.3; ρ11(0) = ρ22(0) = 0.35;
Re[ρ21] = ‒0.35, Im[ρ21] = 0, Re[531(0)] = Re[532(0)] = 10–8; Re[%(0)] = Im[%(0)] = Im[531(0)] = Im[532(0)] = 0. The
time is measured in units of Ω–1.
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determine its stationary points by equating to zero the
derivatives in the system of differential equations (11).
This gives

(14a)

(14b)
(14c)

This system of algebraic equations is not complete
with respect to variables , η, ζ. Supplementing this
system with the conservation law (12), we obtain the
following closed equation for the SR electric field
strength:

(15)

where ai (i = 0, 1, …, 4) are constants depending on the
initial population α of the third level and splitting δ of
the doublet. The first cofactor in Eq. (15) always dif-
fers from zero: (1/2)(4  – δ2)–2 ≠ 0. Then the poly-
nomial in the numerator must be equal to zero:

(16)
where bi = ai/a0 can be expressed as

(17)

Having found the roots  (n = 1, 2, …, 8) of
Eq. (16), we can determine all the remaining coordi-
nates of stationary points ξn, ζn, ηn, χn of the phase
space using relations (14):

(18)

It should be noted that Eq. (16) contains only the
terms with even powers of . A simple substitution
I =  reduces this equation to the fourth-power equa-
tion

whose solution can be found, for example, by the stan-
dard Ferrari method [61]. This equation has four dif-
ferent roots, while in the sought variable , it has eight
pairwise symmetric real-valued and pairwise conju-
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gate complex-valued roots which, with allowance for
relations (18), give the complete set of coordinates of
the stationary points An = ( , ξn, ζn, ηn, χn):

(19)

(20)

(21)

(22)

Here, the constants Q1,2 and D1,2, G1,2, and S1,2 have
the form

(23)
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(25)

We are interested in the solutions to the problem
under investigation only in the real domain. All coor-
dinates (19)–(22) of stationary points An determined
above are functions of parameters α and δ; therefore,
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it is important to find their values for which , ξn, ζn,
ηn, and χn are real numbers. This is required for the
radicands in the expressions (19)–(22) to be greater
than or equal to zero:

(26)

Not going into details of the analysis, we only note
that the stationary points A1,2,3,4 exist in a part of two-
parametric domain (α, δ), in which H1(α, δ) ≥ 0. This
domain of existence of solutions (19) and (20) is
bounded by the lower branch of the zero equipotential
level D1(α, δ) = 0 (24) and is defined by the inequality

The singular points A5,6 defined in (21) do not exist

since (α, δ) ≤ 0 for the entire range of parameters
(α, δ). Conversely, the points A7,8 defined in (22)

always exist because (α, δ) ≥ 0 for any (α, δ).

Let us return to the polynomial U( ) =  + b1  +

b2 + b3  + b4 (16). As noted above, its zeros deter-
mine in the phase space the systems stationary points
(maxima, minima, and so on). Only the real zeros
have physical meaning. Their existence and number
depends on the initial population α of the upper level
and the doublet splitting δ. The remaining (nonphysi-
cal) zeros are pairwise conjugate complex numbers.
The change in the number of real zeros and their mul-
tiplicity indicates a change in the number of stationary
points in the phase space of the system, which sub-
stantially affects the SR dynamics, leading to bifurca-
tion of the system upon a transition through certain
critical values αcr and δcr (see below).

Figure 3 shows the polynomial U( ) for a certain
sampling of values α and δ. This figure illustrates the
patterns of the number of zeros and their degeneracy
and, hence, the number of stationary points of the sys-
tem. For example, as follows from Fig. 3a, the polyno-
mial U( ) has six different roots for α= 0.48 and δ =
0.6, while for α = 0.6 and δ = 1.65 (Fig. 3e), there are
two triply degenerate roots. Finally, for α = 0.48 and
δ = 1.8, the polynomial has only two real-valued roots
(Fig. 3f), while the remaining roots are complex-val-
ued (unphysical). Arrows show the degenerate roots
that determine the specific bifurcation transition.

Concluding the section, we note that the zeros
become degenerate for certain critical values of αcr and
δcr, which determine a singular point (of bifurcation
transition of the system) in the parameter’s space
(α, δ). The collection of such points in the (α, δ) space
determine a line demarcating the domains of dynamic
SR regimes, which is also an interesting trend in inves-
tigation; however, it will be the subject of a stand-
alone study and is not considered here.
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5. POINCARÉ MAPPING: 
STAGES OF THE SYSTEM RANDOMIZATION

The Poincaré mapping method is one of the effec-
tive tools for investigating the nonlinear (chaotic)
dynamics of complex systems. In this section, we
apply this method for our model presuming small
doublet splitting δ ! 1 ! Ω. The essence of this
method can be explained as follows [62]. We measure
stroboscopically the dynamic variables and moments,
corresponding to a certain phase φ of a moving phase
point, with a certain period T. For obtaining a Poin-
caré map, we select a sampling of values of functions

(τn), ξ(τn), ζ(τn), η(τn), and χ(τn) (n = 0, 1, 2, …) at
the discrete instants τn = nT + φ. A variation of phase
φ is equivalent to the rotation of the Poincaré plane
(volume) by the corresponding angle. This method
makes it possible to distinguish between periodic
(quasi-periodic) and aperiodic (including chaotic)
types of motion and to trace bifurcation processes
(i.e., the processes of transition of the system under
investigation to certain qualitatively new states). If the
Poincaré map does not consist of a finite set of local-
ized points or has no closed orbit (which corresponds
to a quasi-periodic motion or “motion on a torus”),
such motion may appear to be chaotic.

Figure 4 shows the results of numerical calculations
of two ( , ξ, η) and ( , ξ, ζ) of ten 3D Poincaré maps
with the stroboscopic sampling of values from the cor-
responding vectors ( , ξ, ζ, η, χ) at instants τn = nT,
where period T = π (n = 0, 1, 2, …). In this case, we fix
phase φ = 0, which does not alter the topology of the
phase volume.

In all Poincaré maps, the points indicate the posi-
tions of extrema or repulsion centers on a phase trajec-
tory; the digits 7 and 8 label points in accordance with
the notations adopted in Section 4. Figure 4 also shows
the corresponding Fourier spectra of the field ; each
Fourier spectrum (except the upper one for α = 1)
contains an inset showing the cross-section of the
Poincaré map ( , ξ, ζ) by a plane parallel to the (ξ, ζ)
plane and intersecting the  axis at a point  = 0.5.
Calculations were performed for different values of the
initial population α of the third level (indicated in the
figure) and a small fixed splitting δ = 0.05 of the dou-
blet. The remaining parameters of the calculations are
given in the caption to Fig. 4.

By hypothesis, the model under investigation is
conservative; the phase space of the model is stable in
the Lagrange sense and bounded by the hypersurface
(13) (see Section 2). In the SR regime with 1/2 < α ≤
1, this hypersurface is represented topologically by a
dumbbell with a narrow waist in the vicinity of the sin-
gular point located at the origin. This point is the sep-
aratrix and a center of strong attraction as well as
repulsion of the mapping phase point upon its moving
off and approaching, respectively.

e

e e

e

e

e

e e
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When the system passes from the SR regime to the
SR regime without inversion, that occurs for α = 1/2,
the waist of the dumbbell is broadened substantially,
and the dumbbells is transformed into an ellipsoid
even for α = 1/3. For this reason, depending on
parameter α, we will henceforth speak of the motion in
the phase space over tori in the inner cavity of the
dumbbell (1/2 < α < 1), or over tori lying on the
dumbbell surface, when α = 1/2 + 0+, or over a large
number of tori lying in the inner region of the ellipsoid
(α < 1/3).

It can be seen from Fig. 4 that for the initial popu-
lation α = 1 of the third level, the Poincaré maps are
closed curves that never pass through the origin (sepa-
ratrix) [45]. The fact that the curves in Poincaré maps
are closed indicates quasi-periodicity of the given
motion or the motion of the representative point over
the surfaces of two five-dimensional tori, lying in the
left (right) cavity of the dumbbell. The quasi-periodic-
ity of motion is confirmed by the Fourier spectrum of

the field  (see Fig. 4, α = 1). Predominant spikes can
be seen at frequencies multiple of the frequency f0 = f2
– f1 = π/10, where fk = (k – 1/2)f0, k = 1, 2, … . This
result corresponds, to a high degree of accuracy, to the
Kolmogorov–Arnold–Moser conditions of quasi-
periodicity of oscillations (see, for example, [63]).

As a result of an insignificant decrease in the pop-
ulation (α = 0.99) of the third level (see the corre-
sponding curve in Fig. 4), the closed trajectory in
Poincaré maps (see the previous case with α = 1) is
transformed into two tori lying in the cavities of the
dumbbell; this can clearly be seen on the ( , ξ, ζ) map
and in the corresponding inset. To demonstrate the
peculiarities of these tori, the inset shows a cut by the
(ξ, ζ) plane on a magnified scale indicated in the
octant I. The Fourier spectrum of the field displays the
presence of small-amplitude subharmonics in the
vicinity of frequencies fk.

For α = 0.7 (see the corresponding diagram in
Fig. 4), the tori are broadened and turn inside out, dif-

e

e

Fig. 3. Plots of the polynomial U( ) =  + b1  + b2  + b3  + b4 (16) whose zeros (that determine stationary points of the
system) can be degenerate for a certain sampling of critical values αcr and δcr. The dashed lines show the coordinate axes; the dark
circles indicate the nondegenerate roots of the polynomial U( ); the light circles denote degenerate roots. The rot multiplicity is
explicitly shown by equating the corresponding roots . The arrows point the degenerate roots that determine a specific bifurca-
tion transition.
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Fig. 4. An example of two of ten 3D Poincaré maps and the Fourier spectrum of the SR field strength , depending on ρ33(0) =
α (shown on the left), which were obtained by numerical solution of Eqs. (11) with the initial conditions (0) = 0, η(0) = (α –
1)/2, χ(0) = 0, ξ(0) = 50 = 10–8; ζ(0) = 0. The doublet splitting is δ = 0.05 (in units of Ω). Frequency is given in units of Ω.
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fusing into themselves within the dumbbell surface.
The beginning of diffusion of parts of tori into them-
selves is precisely the instant of the beginning of a
transition of the system from the quasi-periodic
motion to chaos. It is important to note in this con-
nection that the phase trajectories at the instant of
turning inside out do not intersect one another, form-
ing a heteroclinic structure (see, for example, [64]). In
this case, the Fourier spectrum of the field does not
resemble any longer a set of certain harmonics. It
rather resembles a noise spectrum. This means that for
α = 0.7, the system is in the state of dynamic chaos.

The degree of randomization of the processes
occurring in the system under investigation increases
upon a further decrease in the population of the third
level to α → 1/2. As a result, the Fourier spectrum
becomes noisier (the corresponding graph in Fig. 4
corresponds to α = 0.51). The initial tori have turned
inside out completely and represent parts of the dumb-
bell surface (left or right). The representative point
moves over the dumbbell surface (excluding the ori-
gin), which in turn is covered by the phase trajectory
almost completely. In this case, the representative vec-
tor, following the representative point over the dumb-
bell, surface changes its length unpredictably, bringing
the system to dynamic chaos.

It should be noted that, upon a transition from the
SR regime to the SR regime without inversion on the
interval 1/3 < α < 1/2, the 5D dumbbell is transformed
into a 5D ellipsoid (see Section 2). In this case, the
physical properties of SR radically change: the point
α = 1/2 is a bifurcation (transient) point between the
SR regime and the inversionless SR regime. This
instant of the transition is characterized by a high
degree of quasi-periodicity, which is manifested itself
in the corresponding Fourier spectrum of the field by
the presence of stable harmonics at frequencies fk =
(k ‒ 1/2)f0 and subharmonics at frequencies multiple
of fk/20.

As a result of bifurcation, the system passes to a
new type of chaos, for which the system’s state is char-
acterized by a broad structureless spectrum (see Fig. 4,
α = 0.49). The representative vector, which changes its
length unpredictably, follows the representative point
not only over the dumbbell surface, but also in a cer-
tain neighborhood under it (see the inset to the corre-
sponding panel).

Upon a further decrease of the parameter α (see
Fig. 4, α = 0.3), the observed randomization of the
dynamic system becomes stronger. After passing
through the boundary value α = 1/3, the initial phase
space of the dumbbell-type model is completely trans-
formed into an ellipsoid. The Fourier spectrum of the
field is characterized by the absence of well defined
harmonics and resembles white noise. The corre-
sponding inset in this panel indicates the presence of a
broad zone of random walk of the phase point repre-
sentative vector under the surface of the ellipsoid.

6. MECHANISM AND SCENARIOS 
OF DYNAMIC CHAOS

Let us consider the dynamics of evolution of the
system under investigation in the case when the spec-
trum of the SR field is substantially noise-polluted
(see Fig. 4 in Section 5). The characteristic conditions
of such regimes can be described as follows:
(i) a domain of the SR regime in the vicinity and above
the bifurcation transition of the system to the SR state
without inversion (α = 1/2 + 0+), in which the phase
trajectory lies on the surface of the dumbbell;
(ii) a domain of the inversionless SR regime (0 < α <
1/2), in which the bridge between the dumbbell cavi-
ties expands and ensures the condition for wandering
of the phase trajectory within the hypersurface (13).

It should be noted that the dimension of the phase
space in the case of a degenerate doublet (δ = 0) is ℝ2

[45]. Even an infinitesimal splitting of the doublet
transforms its dimension stepwise from ℝ2 to ℝ5 and is
responsible for a complex behavior of the system’s rep-
resentative point in the phase space ( , ξ, ζ, η, χ) (see
Fig. 4 in Section 5). Actually, this can be seen from the
system of equations (11) after its certain transforma-
tion. For this purpose, we introduce new functions ε,
ϑ, and   by the relations

(27)

This gives the following system of differential equa-
tions equivalent to the initial system:

(28a)

(28b)

(28c)

(28d)

(28e)

For δ = 0 (degenerate doublet), this system of
equations splits into two independent blocks:
Eqs. (28a) and (28b) for ε and ξ and Eqs. (28c)–(28e)
for the remaining variables , ϑ, and χ. We are inter-
ested in the equation for the field, which in this limit
has the form

(29)

and represents the well-known Duffing equation [65].
It has an analytic solution in terms of the Jacobi ellip-
tic functions, which describes periodic pulsations of
the SR field of a duration Ω–1 and of a period TD =
4Ω‒1K(m), where K(m) is the complete elliptic integral
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of the first kind. The parameter m is defined by the
expression

(see [45] for details). In this case, phase trajectories of
the system in the (ε, ) space are always closed.

In the case of a nondegenerate doublet (δ ≠ 0),
Eqs. (28) form a system of five coupled nonlinear
equations. The difference from the case of the degen-
erate doublet (δ = 0) consists in the presence of small
(in parameter δ ! 1) anharmonic perturbations of the
SR field by the atomic subsystem. These perturbations
introduce disbalance into the Duffing oscillations of
the SR field and ultimately bring the vibrational sys-
tem to the intrinsic resonances and dynamic chaos
[62–64, 66].

Let us consider the mechanism of randomization
of the system. The representative point of the system
evolving in time can substantially approach the sepa-
ratrix solution (origin of coordinates; see Fig. 5). In
this case, the phase velocity of the representative point
decreases almost to zero, and the system under inves-
tigation practically does not generate the SR field. At
this instant, the conditions for outgoing (jump) of the
phase trajectory to a new one occur. In the regime of
the standard SR, this is the left or right cavity of the
dumbbell (for example, the case of α = 1/2 + 0+ that
corresponds to numerical calculations with the initial
conditions α = 0.51, δ = 0.05, ε(0) = 0, ϑ(0) = (α –
1)/(2δ), χ(0) = 0, ξ(0) = 50 = 10–3, and (0) = 0 (see
Figs. 5a and 5b). In the regime of SR without inver-
sion, these are tori lying “under the hypersurface”
(13), the case when 0 < α < 1/2 that corresponds to
numerical calculation with the initial conditions α =
0.3, δ = 0.055, ε(0) = 0, ϑ(0) = (α – 1)/(2δ), χ(0) =
0, and ξ(0) = 50 = 10–4, and (0) = 0 (see Figs. 5c and
5d). In this case, the system arrives at dynamic chaos
in accordance with the same scenario (distracting
tori). The results of numerical calculations shown in
Fig. 5 visually illustrate this situation.

I. Regime of the standard SR (α = 0.51, γ = α –
1.3 > 0, see Figs. 5a and 5b) is characterized by a com-
plex motion of the phase point of the system over the
surface of the dumbbell and by a noisy spectrum of the
field (see Fig. 4, the Fourier spectrum for the corre-
sponding value of α). The representative vector of the
phase point of the system moves either in the region of
the left branch of the dumbbell (we denote this motion
by Θ1) or “jumps” to the region of the right branch of
the dumbbell (Θ2, Fig. 5b). The dynamics of the elec-
tric field strength ε is completely consistent with such
a behavior (see Fig. 5a). The motion in domain Θ1
corresponds to the field oscillations in the positive
half-plane (octant I), while the motion in domain Θ2
corresponds to the field oscillations in the negative
half-plane (octant II). The periods of time Ti (i = 1, 2,

= −
+ α α + α +

2
2 0

2 2 2
0 0

21
4 ( /2 /4 2 )

m
5

5 5

ε�

�

�

…) in which the system is in domains Θ1 and Θ2 are
essentially different. The difference also exists in the
number of rotations performed by the representative
vector moving in these domains of the phase space.
For example, period T7 (domain Θ1) corresponds to 35
rotations of different amplitudes, while period T8
(domain Θ2) corresponds to 34 rotations also with dif-
ferent amplitudes. Any approach of the representative
phase point to the separatrix creates new conditions in
the evolution of the system (i.e., a new torus with com-
pletely different amplitude and frequency characteris-
tics).

II. Regime of SR without inversion, 0 < α ≤ 1/3
and γ = α – 1/3 < 0 (see Figs. 5c and 5d), is also char-
acterized by complex phase movements, but now in
the bulk of the ellipsoid. Like in the previous case, the
representative point of the system approaches the
coordinate origin (separatrix) in certain time intervals.
Each approach is accompanied with the destruction of
the previous motion and a transition of the system to a
qualitatively new state. In the phase space, this regime
is a family of tori disintegrating with time [64].
Figure 5d shows the dynamics of evolution and dis-
traction of the first two tori, as well as a graph of the
SR electric field strength  corresponding to this case
(see Fig. 5c). The SR regime for these parameters of
the system is unpredictable, that means dynamic
chaos.

7. EFFECTS OF RELAXATION 
AND CAVITY LOSSES

The results described in Sections 3–6 were
obtained for a Hamiltonian system (i.e., disregarding
the cavity losses as well as homogeneous and inhomo-
geneous broadening in the system of emitters). It
should be noted, however, that these processes are
attributive features of actual systems. For this reason,
it is important to discuss their effects on the inversion-
less SR regimes in the cavity discovered in this work.
Since the realization of a specific scenario strongly
depends on the initial population of the upper level
and the doublet splitting, we will restrict our analysis
to a set of parameters specified in Fig. 2, but now we
will use the general equations (4), taking into account
the cavity losses and relaxation in the system of emit-
ters.

7.1. Cavity Losses

We assume that the relaxation times T1, T2, and 
of the system of emitters are longer than the lifetime
Tres of the field in the cavity, so that the latter process
is a dominating channel of the SR field damping. In
this case, the conservation law (5a) does not hold
because the field leaves the cavity. One can expect that
the inversionless SR regime found for an ideal system
is also partly preserved in these conditions if its char-

e
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acteristic time is shorter than Tres. Figures 6b and 6c
show the results of calculations of the inversionless SR
dynamics for various values of Tres, which confirms the
above arguments. Indeed, the SR pulse in Figs. 6b and
6c preserves the features of the ideal case (see Fig. 6a)
for t < Tres and decreases when t > Tres.

7.2. Homogeneous Broadening

Let us now consider the effect of homogeneous
broadening of optical transitions on the dynamics of
three-level SR in the cavity, which is described by the
times T1 and T2 (T1 and T2 processes). The homoge-
neous broadening causes relaxation of the coherence
of each emitter with time T2. In an open system, this
leads to a monotonic decrease of the SR signal upon
shortening T2 and, as a consequence, to its complete
vanishing [67, 68]. In our case, T1 and T2 processes
lead to violation of the conservation laws (5b) and
(5c). The system of emitters loses coherence, and the
SR field decreases even in the absence of cavity losses.
The population relaxation time T1 is fixed (sponta-
neous decay) and is large on the SR scale, while the
time T2 depends on temperature and can be much
smaller than T1 and comparable with the SR lifetime.
For this reason, in our analysis we fixed T1 and varied
T2. The results of calculations are shown in Fig. 7.
As is seen, the global effect of homogeneous broaden-
ing consists in suppression of SR and a change in its
time scale upon decreasing T2. At first glance, it is sur-
prising that the signal exists over time intervals consid-
erably exceeding T2. We attribute this to the low-fre-
quency coherence ρ21, which does not decay in our
model (see Eq. (4c)) and represents therefore a source
of the high-frequency coherence (see Eqs. (4d) and

(4e)). Recall that we disregard the cavity losses in this
case. This means that the field does not escape from
the system, but it decreases due to dephasing. These
two factors lead to a partial revival of the SR signal for
times t > T2. It should also be noted that even for short
T2, the SR pulse exhibits quasi-periodicity that
approximately corresponds to the period 2π/ω21 of
oscillations of the low-frequency coherence, but it
nevertheless decays with time. Thus, in spite of some
peculiarities in the effect of homogeneous broadening
on the cavity inversionless SR, it ultimately destroys
the regime of the Hamiltonian system for t > T2.

7.3. Inhomogeneous Broadening

Let us consider the effect of inhomogeneous
broadening on the dynamics of cooperative three-level
emission in a cavity, assuming that all remaining relax-
ation times are much longer. This type of broadening
violates the conservation law (5c). In the general case,
inhomogeneous broadening differs significantly from
its homogeneous counterpart: the phase of each emit-
ter is preserved, and only the collective response
decreases with time (in the linear case). The phases of
the emitters can, in principle, be inverted using a
coherent pulse, and a photon echo signal can be
observed in this case (see, for example, [69]). For this
reason, this type of relaxation is often referred to as
reversible relaxation. In the case of an open system,
inhomogeneous broadening, in the same manner as
homogeneous one, suppresses the SR signal [67, 68].
If, however, the Q factor of the cavity containing the
system is high enough (i.e., the SR field is retaining in
the cavity for a long time), quasi-periodic (or even
chaotically repeating) combs of the SR pulses (like in
our case) play the role of coherent trains, inverting the

Fig. 6. Effect of cavity losses on the SR dynamics from the
results of calculations based on the system of equations
(4), disregarding the homogeneous and inhomogeneous
broadening. The SR lifetime in the cavity is τres = ∞ (a),
100 (b), and 50 (c) (in units of Ω–1). The remaining
parameters are the same as in Fig. 3. Time is measured in
units of Ω–1.
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Fig. 7. Effect of homogeneous broadening on the SR
dynamics from the results of calculations based on the sys-
tem of equations (4), disregarding the cavity losses and
inhomogeneous broadening. The coherence relaxation
time τ2 = 105 (a), 100 (b), and 50 (c) (in units of Ω–1). The
population relaxation time τ1 = 105. The remaining
parameters are the same as in Fig. 3. Time is measured in
the units of Ω–1.
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phases of emitters. It can then be expected that the
effect of inhomogeneous broadening on SR radically
differs from the effect of homogeneous broadening,
that is actually the case. Figure 8 shows the corre-
sponding results of calculations of the inversionless SR
dynamics, modeling the inhomogeneous contours
g31(ω) and g32(ω) by identical Gaussian distributions

with the standard deviation  (  is the inhomoge-
neous relaxation time) for different values of . As is
seen from Fig. 8, even a significantly large (on the
computation scale) time  leads to a noticeable
change in the shape of the SR pulse obtained for an
ideal (Hamiltonian) system (Fig. 8a). We attribute
such a strong effect of even a small inhomogeneous
broadening on the SR pulse to the fact that the system
resides at the state of dynamic chaos already in the
ideal (Hamiltonian) case. Therefore, even small varia-
tions in the emitters’ phases during emission lead to an
essentially different scenario of the system’s optical
dynamics, preserving, however, its chaotic nature. For
shorter times , the dynamics of SR without inver-
sion experiences still stronger changes, but (which is
important) exhibits no decay.

8. PROMISING SYSTEMS

Crystals doped with rare-earth ions (e.g.,
LaF3:Pt3+, Y2SiO5:Pr3+, Y2SiO5:Eu3+, and others) are
the real objects in which the conditions for the obser-
vation of the nonstandard regimes of inversionless
cavity SR can be realized. At cryogenic temperatures,
the states of the 4f orbital of these ions exhibit a high
degree of optical coherence (smaller than a kilohertz
as in Y2SiO5:Er3+ [70]) and a record-low inhomoge-
neous broadening (from megahertz to gigahertz) [70].
The coherence time of Zeeman or hyperfine states of
the ground level may reach 6 hours [71]. The above
extraordinary properties render the crystals doped
with rare-earth ions to be very prospective systems
from the viewpoint of solid-state optical memory and
fully optical data processing [72], as well as for the
observation of coherent optical effects (in particular,
superradiance) [14, 15, 56, 73–79].

Below, we will use the optical parameters of rare-
earth systems without mentioning a specific crystal.
The lifetime T1 of the states of the 4f orbital of rare-
earth ions depends on the matrix and can vary from a
few tens of microseconds to hundreds of milliseconds
[70] (optical transitions in isolated ions are dipole-for-
bidden). For estimates, we choose T1 ~ 10–100 ms.
The SR time scale is determined by the cooperative
frequency Ω = (2πd2ωN/ )1/2, where the ion concen-
tration N is a significant variable parameter. The tran-
sition dipole moment d can be determined from the
lifetime T1 of the excited state: 1/T1 = 4d2ω3n/(3 c3),
where n is the refractive index of the matrix (its typical

−1
2
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2
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2
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2
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value is n ≈ 1.6). As a result, we obtain Ω2 =
3cλ2N/(8πT1), whence Ω2 ≈ (102–4 × 103)N cm3 s–2

for λ ≈ 500–1000 nm and T1 ≈ 10–100 ms. For the
concentration N ~ 1012 cm–3 of rare-earth ions, the
cooperative frequency Ω is estimated as Ω ~ (1–5) ×
107 s–1 and, accordingly, Ω–1 ≈ (2–10) × 10–8 s. The
delay time of the SR pulse for the parameters of our
calculations is TD ≈ 25Ω–1 (see Fig. 3), which gives TD

≈ (0.25–2.5) μs for the above range of parameters. The
population of the upper state below 0.5 can be attained
by an incoherent pumping of submicrosecond dura-
tion. A typical scale of the hyperfine structure of the
ground state of (non-Kramers) ions is on the order of
10–100 MHz, so that the coherence in the subsystem
of these states can be produced by a pulsed microwave
field of submicrosecond duration. As noted above, the
optical coherence times T2 in the aforementioned
rare-earth systems belong to the millisecond range,
while the inhomogeneous relaxation times  are in
the submillisecond range.

According to the above estimates, the conditions
for the observation of the cavity inversionless SR and
its nonstandard regimes found in this work can be
realized in the aforementioned systems. Indeed, for
that to happen, first, the inequality Ω > ω21 must be
satisfied that can be met. Next, the system is required
to be excited to the upper level, and the low-frequency
coherence must be produced over a time interval
shorter than the SR delay time TD; this condition can
also be realized. And finally, for initiating SR, an ini-
tial polarization must be induced by a coherent optical
pulse of a small area and a duration shorter than TD,
that can be easily achieved. The trigger pulse should be
directed at an angle to the system’s axis to generate a

2
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Fig. 8. Effect of inhomogeneous broadening on the SR
dynamics from the results of calculations based on the sys-
tem of equations (4) disregarding the cavity losses and
homogeneous broadenings. The inhomogeneous relax-
ation time is  = ∞ (a), 1000 (b), and 100 (c) (in units of
Ω–1). The remaining parameters are the same as in Fig. 3.
Time is measured in units of Ω–1.
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wave propagating in one direction. As regards the
homogeneous and inhomogeneous relaxation times
T2 and , their values are much greater than the
period 2π/ω21 of the low-frequency coherence, char-
acteristic for the chaotic structure of the SR pulse. The
cavity losses can be made negligibly low using high-
quality mirrors.

9. CONCLUSIONS
In this work, we have investigated theoretically the

Dicke SR in a system of three-level quantum emitters
with a doublet in the ground state (Λ scheme of oper-
ating transitions), placed into a cyclic cavity. For the
standard (two-level) SR, an initial population inver-
sion is required. In a particular case of Λ emitters, this
limitation is not compulsory: SR is possible even if the
population of the upper level is smaller than the total
population of the doublet (Dicke SR without inver-
sion). This regime can be realized if the doublet has
been prepared in a coherent state.

In the ideal case of a Hamiltonian system, in which
the cavity losses and homogeneous and inhomoge-
neous relaxation in the emitter system are negligibly
small, we have obtained the conservation laws that
make it possible to substantially reduce the dimension
of the phase space of the model (ℝ11 → ℝ5) and to use
the methods of dynamics of nonlinear system for ana-
lyzing the cavity three-level SR under these condi-
tions. For this purpose, we have used the Poincaré
mapping technique. It has been shown that in the gen-
eral case of a nondegenerate doublet, the temporal
dynamics of SR without inversion demonstrates dif-
ferent regimes (such as self-oscillations and chaos)
which are not typical for the standard Dicke SR. The
realization of these regimes is controlled by the initial
population of the upper level and the doublet splitting.

Analysis of the Hamiltonian system takes advan-
tage the integrals of motion (5a)–(5c). Being a basis
for studying stationary states of the system and its pos-
sible evolution, it cannot be used directly for deter-
mining the system’s dynamics in the presence of
homogeneous and inhomogeneous broadening in the
system of emitters and cavity losses, which are factors
violating a particular conservation law. From the the-
oretical point of view, the analysis of optical dynamics
of the system under investigation in the presence of
these factors is an open and complicated problem.
One of the methods for its at least partial solution is
numerical integration of the control equations and
comparison of their solutions with the ideal (Hamilto-
nian) case. In this way, certain conclusions can be
drawn concerning the optical dynamics of the system
in the presence of relaxation and time intervals, on
which the Hamiltonian limit can be observed.

Hewing to this strategy, we have found that the cav-
ity losses and homogeneous broadening (irreversible
relaxation) lead to damping of the SR signal of a Ham-

2
*T

iltonian system over time intervals longer than the cor-
responding relaxation times Tres and T2. In other
words, the system preserves its Hamiltonian nature
over time t < Tres, T2. The effect of inhomogeneous
broadening on the cavity three-level SR, in view of its
reversible nature, is essentially different. First, this
broadening does not lead to damping of the SR signal.
Second, even a small variation of its value results in to
a noticeable change in the SR pulse obtained for an
ideal (Hamiltonian) system, preserving herewith its
chaotic nature. This is an interesting question that
requires a further investigation.
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