2,838 research outputs found

    Universality class for bootstrap percolation with m=3m=3 on the cubic lattice

    Full text link
    We study the m=3m=3 bootstrap percolation model on a cubic lattice, using Monte Carlo simulation and finite-size scaling techniques. In bootstrap percolation, sites on a lattice are considered occupied (present) or vacant (absent) with probability pp or 1−p1-p, respectively. Occupied sites with less than mm occupied first-neighbours are then rendered unoccupied; this culling process is repeated until a stable configuration is reached. We evaluate the percolation critical probability, pcp_c, and both scaling powers, ypy_p and yhy_h, and, contrarily to previous calculations, our results indicate that the model belongs to the same universality class as usual percolation (i.e., m=0m=0). The critical spanning probability, R(pc)R(p_c), is also numerically studied, for systems with linear sizes ranging from L=32 up to L=480: the value we found, R(pc)=0.270±0.005R(p_c)=0.270 \pm 0.005, is the same as for usual percolation with free boundary conditions.Comment: 11 pages; 4 figures; to appear in Int. J. Mod. Phys.

    Phase structure of lattice QCD at finite temperature for 2+1 flavors of Kogut-Susskind quarks

    Get PDF
    We report on a study of the finite-temperature chiral transition on an Nt=4N_t=4 lattice for 2+1 flavors of Kogut-Susskind quarks. We find the point of physical quark masses to lie in the region of crossover, in agreement with results of previous studies. Results of a detailed examination of the mu,d=msm_{u,d}=m_s case indicate vanishing of the screening mass of σ\sigma meson at the end point of the first-order transition.Comment: LATTICE98(hightemp), 3 pages, 4 figure

    The Phase Diagram of Compact QED Coupled to a Four-Fermi Interaction

    Get PDF
    Compact lattice Quantum Electrodynamics (QED) with four species of fermions is simulated with massless quarks by using the χ\chiQED scheme of adding a four-fermi interaction to the action. Simulations directly in the chiral limit of massless quarks are done with high statistics on 848^4, and 16416^4 lattices, and the phase diagram, parameterized by the gauge and the four-fermi couplings, is mapped out. The line of monopole condensation transitions is separate from the line of chiral symmetry restoration. The simulation results indicate that the monopole condensation transition is first order while the chiral transition is second order. The challenges in determining the Universality class of the chiral transition are discussed. If the scaling region for the chiral transition is sufficiently wide, the 16416^4 simulations predict critical indices far from mean field values. We discuss a speculative scenario in which anti-screening provided by double-helix strands of monopole and anti-monopole loops are the agent that balances the screening of fermion anti-fermion pairs to produce an ultra-violet fixed point in the electric coupling.Comment: 29 pages, 8 figures and 2 table

    Anomaly and a QCD-like phase diagram with massive bosonic baryons

    Full text link
    We study a strongly coupled Z2Z_2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2)×SU(2)×UA(1)×UB(1)\mathrm{SU}(2)\times \mathrm{SU}(2) \times \mathrm{U}_A(1) \times \mathrm{U}_B(1) symmetry which is the same as QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the UA(1)\mathrm{U}_A(1) symmetry and thus mimic the QCD anomaly. At low temperatures TT and small baryon chemical potential μB\mu_B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the T−μBT-\mu_B phase diagram of the model and show that it contains three phases : (1) A chirally broken phase at low TT and μB\mu_B, (2) a chirally symmetric baryon superfluid phase at low TT and high μB\mu_B, and (3) a symmetric phase at high TT. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde

    Statistical Power, the Bispectrum and the Search for Non-Gaussianity in the CMB Anisotropy

    Full text link
    We use simulated maps of the cosmic microwave background anisotropy to quantify the ability of different statistical tests to discriminate between Gaussian and non-Gaussian models. Despite the central limit theorem on large angular scales, both the genus and extrema correlation are able to discriminate between Gaussian models and a semi-analytic texture model selected as a physically motivated non-Gaussian model. When run on the COBE 4-year CMB maps, both tests prefer the Gaussian model. Although the bispectrum has comparable statistical power when computed on the full sky, once a Galactic cut is imposed on the data the bispectrum loses the ability to discriminate between models. Off-diagonal elements of the bispectrum are comparable to the diagonal elements for the non-Gaussian texture model and must be included to obtain maximum statistical power.Comment: Accepted for publication in ApJ; 20 pages, 6 figures, uses AASTeX v5.

    Phase structure of lattice QCD for general number of flavors

    Full text link
    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors NF=6N_F=6--360 with degenerate-mass quarks, we find that when NF≥7N_F \ge 7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λd\Lambda_d which is the physical scale characterizing the phase transition in the weak coupling region: When NF≥17N_F \ge 17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥NF≥716 \ge N_F \ge 7, there is a non-trivial IR fixed point and therefore the theory is non-trivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for NF≤6N_F \le 6.Comment: RevTeX, 20 pages, 43 PS figure

    Pathologies of Quenched Lattice QCD at non--zero Density and its Effective Potential

    Get PDF
    We simulate lattice QCD at non--zero baryon density and zero temperature in the quenched approximation, both in the scaling region and in the infinite coupling limit. We investigate the nature of the forbidden region -- the range of chemical potential where the simulations grow prohibitively expensive, and the results, when available, are puzzling if not unphysical. At weak coupling we have explored the sensitivity of these pathologies to the lattice size, and found that using a large lattice (64×16364 \times 16^3) does not remove them. The effective potential sheds considerable light on the problems in the simulations, and gives a clear interpretation of the forbidden region. The strong coupling simulations were particularly illuminating on this point.Comment: 49 pages, uu-encoded expanding to postscript;also available at ftp://hlrz36.hlrz.kfa-juelich.de/pub/mpl/hlrz72_95.p
    • …
    corecore