10,192 research outputs found
Particle-fluid interactions for flow measurements
Study has been made of the motion of single particle and of group of particles, emphasizing solid particles in gaseous fluid. Velocities of fluid and particle are compared for several conditions of physical interest. Mean velocity and velocity fluctuations are calculated for single particle, and some consideration is given to multiparticle systems
Turbulence measurements using the laser Doppler velocimeter
The photomultiplier signal representing the axial velocity of water within a glass pipe is examined. It is shown that with proper analysis of the photomultiplier signal, the turbulent information that can be obtained in liquid flows is equivalent to recent hot film studies. In shear flows the signal from the laser Doppler velocimeter contains additional information which may be related to the average shear
Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere
We numerically examine the spatial evolution of the structure of coherent and
partially coherent laser beams (PCBs), including the optical vortices,
propagating in turbulent atmospheres. The influence of beam fragmentation and
wandering relative to the axis of propagation (z-axis) on the value of the
scintillation index (SI) of the signal at the detector is analyzed. A method
for significantly reducing the SI, by averaging the signal at the detector over
a set of PCBs, is described. This novel method is to generate the PCBs by
combining two laser beams - Gaussian and vortex beams, with different
frequencies (the difference between these two frequencies being significantly
smaller than the frequencies themselves). In this case, the SI is effectively
suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure
Fluctuating Fronts as Correlated Extreme Value Problems: An Example of Gaussian Statistics
In this paper, we view fluctuating fronts made of particles on a
one-dimensional lattice as an extreme value problem. The idea is to denote the
configuration for a single front realization at time by the set of
co-ordinates of the
constituent particles, where is the total number of particles in that
realization at time . When are arranged in the ascending order
of magnitudes, the instantaneous front position can be denoted by the location
of the rightmost particle, i.e., by the extremal value
. Due to interparticle
interactions, at two different times for a single front
realization are naturally not independent of each other, and thus the
probability distribution [based on an ensemble of such front
realizations] describes extreme value statistics for a set of correlated random
variables. In view of the fact that exact results for correlated extreme value
statistics are rather rare, here we show that for a fermionic front model in a
reaction-diffusion system, is Gaussian. In a bosonic front model
however, we observe small deviations from the Gaussian.Comment: 6 pages, 3 figures, miniscule changes on the previous version, to
appear in Phys. Rev.
Controlling the Spin Polarization of the Electron Current in a Semimagnetic Resonant-Tunneling Diode
The spin filtering effect of the electron current in a double-barrier
resonant-tunneling diode (RTD) consisting of ZnMnSe semimagnetic layers has
been studied theoretically. The influence of the distribution of the magnesium
ions on the coefficient of the spin polarization of the electron current has
been investigated. The dependence of the spin filtering degree of the electron
current on the external magnetic field and the bias voltage has been obtained.
The effect of the total spin polarization of the electron current has been
predicted. This effect is characterized by total suppression of the spin-up
component of electron current, that takes place when the Fermi level coincides
with the lowest Landau level for spin-up electrons in the RTD semimagnetic
emitter
Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program.
Differences in gene expression underlie many of the phenotypic variations between related organisms, yet approaches to characterize such differences on a genome-wide scale are not well developed. Here, we introduce the "differential clustering algorithm" for revealing conserved and diverged co-expression patterns. Our approach is applied at different levels of organization, ranging from pair-wise correlations within specific groups of functionally linked genes, to higher-order correlations between such groups. Using the differential clustering algorithm, we systematically compared the transcription program of the fungal pathogen Candida albicans with that of the model organism Saccharomyces cerevisiae. Many of the identified differences are related to the differential requirement for mitochondrial function in the two yeasts. Distinct regulation patterns of cell cycle genes and of amino acid metabolic genes were also revealed and, in some cases, could be linked to the differential appearance of cis-regulatory elements in the gene promoter regions. Our study provides a comprehensive framework for comparative gene expression analysis and a rich source of hypotheses for uncharacterized open reading frames and putative cis-regulatory elements in C. albicans
Deformation independent open brane metrics and generalized theta parameters
We investigate the consequences of generalizing certain well established
properties of the open string metric to the conjectured open membrane and open
Dp-brane metrics. By imposing deformation independence on these metrics their
functional dependence on the background fields can be determined including the
notorious conformal factor. In analogy with the non-commutativity parameter
in the string case, we also obtain `generalized' theta
parameters which are rank q+1 antisymmetric tensors (polyvectors) for open
Dq-branes and rank 3 for the open membrane case. The expressions we obtain for
the open membrane quantities are expected to be valid for general background
field configurations, while the open D-brane quantities are only valid for one
parameter deformations. By reducing the open membrane data to five dimensions,
we show that they, modulo a subtlety with implications for the relation between
OM-theory and NCYM, correctly generate the open string and open D2-data.Comment: 24 pages, LaTe
Quantum search using non-Hermitian adiabatic evolution
We propose a non-Hermitian quantum annealing algorithm which can be useful
for solving complex optimization problems. We demonstrate our approach on
Grover's problem of finding a marked item inside of unsorted database. We show
that the energy gap between the ground and excited states depends on the
relaxation parameters, and is not exponentially small. This allows a
significant reduction of the searching time. We discuss the relations between
the probabilities of finding the ground state and the survival of a quantum
computer in a dissipative environment.Comment: 5 pages, 3 figure
Large magneto-thermal effect and the spin-phonon coupling in a parent insulating cuprate Pr_{1.3}La_{0.7}CuO_4
The magnetic-field (H) dependence of the thermal conductivity \kappa of
Pr_{1.3}La_{0.7}CuO_4 is found to show a pronounced minimum for in-plane fields
at low temperature, which is best attributed to the scattering of phonons by
free spins that are seen by a Schottky-type specific heat and a Curie-Weiss
susceptibility. Besides pointing to a strong spin-phonon coupling in cuprates,
the present result demonstrates that the H-dependence of the phonon heat
transport should not be naively neglected when discussing the \kappa(H)
behavior of cuprates, since the Schottky anomaly is ubiquitously found in
cuprates at any doping.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
- ā¦