3,656 research outputs found

    Structural properties and liquid spinodal of water confined in a hydrophobic environment

    Full text link
    We present the results of a computer simulation study of thermodynamical properties of TIP4P water confined in a hydrophobic disordered matrix of soft spheres upon supercooling. The hydrogen bond network of water appears preserved in this hydrophobic confinement. Nonetheless a reduction in the average number of hydrogen bonds due to the geometrical constraints is observed. The liquid branch of the spinodal line is calculated from 350 K down to 210 K. The same thermodynamic scenario of the bulk is found: the spinodal curve is monotonically decreasing. The line of maximum density bends avoiding a crossing of the spinodal. There is however a shift both of the line of maximum density and of the spinodal toward higher pressures and lower temperatures with respect to bulk.Comment: 7 pages, 12 figure

    Brownout Simulations of Model-Rotors In Ground Effect

    Get PDF
    n this work computational fluid dynamics is used to validate experimental results for a two-bladed small rotor In Ground Effect conditions. The paper focuses on the evaluation and prediction of the rotor outwash generated in ground effect. Time-averaged outflow velocities are compared with experimental results, and the simulated flow field is used for safety studies using the PAXman model and particle tracking methods. The aircraft weights have been studied, evaluating scaling factors to define how helicopter weight can affect the outflow forces and the particle paths. Results show how the wake generated by heavier helicopters can lead to stronger forces on ground personnel and push the particles farther away from the rotor

    CFD Analysis of a Micro-Rotor In Ground Effect

    Get PDF
    In this work, computational fluid dynamics is used to compare experimental results for a two-bladed small rotor Out of Ground Effect and In Ground Effect conditions. The paper focuses on the evalutation and prediction of the performance of the rotor and investigates the outwash generated in ground effect. Time and phase averaged outflow velocities with two different scaling methods are compared with experiments. The results are also scaled to a full-size rotor, and compared with the PAXman model of crew operating in close rotor proximity. A particle pickup model is also used showing the dust cloud generated by the rotor

    Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations

    Get PDF
    Due to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis, especially in the Mediterranean Sea. The aim of this study was to understand the mechanism of deposition of clusters of large boulders, consisting of beachrock slabs, which were found on the southern coasts of Lesvos Island (NE Aegean Sea). Methods to infer the origin of boulder deposits (tsunami vs. storm wave) are often based on hydrodynamic models even if different environmental complexities are difficult to be incorporated into numerical models. In this study, hydrodynamic equations did not provide unequivocal indication of the mechanism responsible for boulder deposition in the study area. Further analyses, ranging from geomorphologic to seismotectonic data, indicated a tsunami as the most likely cause of displacement of the boulders but still do not allow to totally exclude the extreme storm origin. Additional historical investigations (based on tsunami catalogues, historical photos and aged inhabitants interviews) indicated that the boulders are likely to have been deposited by the tsunami triggered by the 6.7 <i>M</i><sub>s</sub> Chios-Karaburum earthquake of 1949 or, alternatively, by minor effects of the destructive tsunami produced by 1956's Amorgos Island earthquake. Results of this study point out that, at Mediterranean scale, to flank numerical models with the huge amount of the available historical data become a crucial tool in terms of prevention policies related to catastrophic coastal events

    Development of analysis tools for structures protected by the damped cable system

    Get PDF

    Assessing enigmatic boulder deposits in NE Aegean Sea: Importance of historical sources as tool to support hydrodynamic equations

    Get PDF
    Due to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis, especially in the Mediterranean Sea. The aim of this study was to understand the mechanism of deposition of clusters of large boulders, consisting of beachrock slabs, which were found on the southern coasts of Lesvos Island (NE Aegean Sea). Methods to infer the origin of boulder deposits (tsunami vs. storm wave) are often based on hydrodynamic models even if different environmental complexities are difficult to be incorporated into numerical models. In this study, hydrodynamic equations did not provide unequivocal indication of the mechanism responsible for boulder deposition in the study area. Further analyses, ranging from geomorphologic to seismotectonic data, indicated a tsunami as the most likely cause of displacement of the boulders but still do not allow to totally exclude the extreme storm origin. Additional historical investigations (based on tsunami catalogues, historical photos and aged inhabitants interviews) indicated that the boulders are likely to have been deposited by the tsunami triggered by the 6.7 M s Chios-Karaburum earthquake of 1949 or, alternatively, by minor effects of the destructive tsunami produced by 1956's Amorgos Island earthquake. Results of this study point out that, at Mediterranean scale, to flank numerical models with the huge amount of the available historical data become a crucial tool in terms of prevention policies related to catastrophic coastal events. © 2012 Author(s). CC Attribution 3.0 License

    The role of micronutrients in high-yielding dairy ruminants: Choline and vitamin E

    Get PDF
    This review addresses the potential role of antioxidants and methyl-group sources in optimising the metabolic health of dairy ruminants. The productivity of high-yielding dairy cows has increased over the past 40 years and the milk yield has doubled. Such increases in milk production have been observed not only in dairy cows but also to some extent in other dairy ruminants such as ewes, goats and buffaloes (Bubalus bubalis). As a consequence, in all specialized dairy ruminants it is essential to optimize the macro and micro-nutrient supply, especially during the most critical period in the animals' production cycle i.e. from parturition until the peak of lactation. In this critical phase, an array of factors can enhance the balance between the intake and demand for nutrients, although the availability and supply of the selected micronutrients is also important. The supplementation of dietary antioxidants or boosting the endogenous methyl group status, via vitamin E, selenium and choline are proposed as possible strategies in maintaining stable metabolic health and optimising milk production
    • …
    corecore