1,012 research outputs found

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Spacetime Structure of an Evaporating Black Hole in Quantum Gravity

    Full text link
    The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant.Comment: 23 pages, BibTeX, revtex4, 7 figure

    Killing vectors and anisotropy

    Full text link
    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Self-force of a point charge in the space-time of a symmetric wormhole

    Full text link
    We consider the self-energy and the self-force for an electrically charged particle at rest in the wormhole space-time. We develop general approach and apply it to two specific profiles of the wormhole throat with singular and with smooth curvature. The self-force for these two profiles is found in manifest form; it is an attractive force. We also find an expression for the self-force in the case of arbitrary symmetric throat profile. Far from the throat the self-force is always attractive.Comment: 18 pages, 3 figures Comments: corrected pdf, enlarged pape

    A momentum-space representation of Green's functions with modified dispersion on ultra-static space-time

    Get PDF
    We consider the Green's functions associated to a scalar field propagating on a curved, ultra-static background, in the presence of modified dispersion relations. The usual proper-time deWitt-Schwinger procedure to obtain a series representation of the Green's functions is doomed to failure, because of higher order spatial derivatives in the Klein-Gordon operator. We show how to overcome this difficulty by considering a preferred frame, associated to a unit time-like vector. With respect to this frame, we can express the Green's functions as an integral over all frequencies of a space-dependent function. The latter can be expanded in momentum space, as a series with geometric coefficients similar to the deWitt-Schwinger's ones. By integrating over all frequencies, we finally find the expansion of the Green's function up to four derivatives of the metric tensor. The relation with the proper-time formalism is also discussed.Comment: revtex, version accepted for publication in Phys. Rev.

    Perturbative evolution of particle orbits around Kerr black holes: time domain calculation

    Get PDF
    Treating the Teukolsky perturbation equation numerically as a 2+1 PDE and smearing the singularities in the particle source term by the use of narrow Gaussian distributions, we have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency domain formalism. A time domain prescription for a more general evolution of nearly geodesic orbits under the effects of radiation reaction is presented. This approach can be useful when tackling the more realistic problem of a stellar-mass black hole moving on a generic orbit around a supermassive black hole under the influence of radiation reaction forces.Comment: 8 pages, 5 figures, problems with references and double-printing fixe

    Adaptive dual-comb spectroscopy in the green region

    Full text link
    Dual-comb spectroscopy is extended to the visible spectral range with a set-up based on two frequency-doubled femtosecond ytterbium-doped fiber lasers. The dense rovibronic spectrum of iodine around 19240 cm-1 is recorded within 12 ms at Doppler-limited resolution with a simple scheme that only uses free-running femtosecond lasers

    Excited by a quantum field: Does shape matter?

    Get PDF
    The instantaneous transition rate of an arbitrarily accelerated Unruh-DeWitt particle detector on four-dimensional Minkowski space is ill defined without regularisation. We show that Schlicht's regularisation as the zero-size limit of a Lorentz-function spatial profile yields a manifestly well-defined transition rate with physically reasonable asymptotic properties. In the special case of stationary trajectories, including uniform acceleration, we recover the results that have been previously obtained by a regularisation that relies on the stationarity. Finally, we discuss evidence for the conjecture that the zero-size limit of the transition rate is independent of the detector profile.Comment: 7 pages, uses jpconf. Talk given at NEB XII (Nafplio, Greece, 29 June - 2 July 2006

    Quadrupole moments of rotating neutron stars

    Full text link
    Numerical models of rotating neutron stars are constructed for four equations of state using the computer code RNS written by Stergioulas. For five selected values of the star's gravitational mass (in the interval between 1.0 and 1.8 solar masses) and for each equation of state, the star's angular momentum is varied from J=0 to the Keplerian limit J=J_{max}. For each neutron-star configuration we compute Q, the quadrupole moment of the mass distribution. We show that for given values of M and J, |Q| increases with the stiffness of the equation of state. For fixed mass and equation of state, the dependence on J is well reproduced with a simple quadratic fit, Q \simeq - aJ^2/M c^2, where c is the speed of light, and a is a parameter of order unity depending on the mass and the equation of state.Comment: ReVTeX, 7 pages, 5 figures, additional material, and references adde
    • …
    corecore