129 research outputs found

    Dynamics of relaxor ferroelectrics

    Full text link
    We study a dynamic model of relaxor ferroelectrics based on the spherical random-bond---random-field model and the Langevin equations of motion. The solution to these equations is obtained in the long-time limit where the system reaches an equilibrium state in the presence of random local electric fields. The complex dynamic linear and third-order nonlinear susceptibilities χ1(ω)\chi_1(\omega) and χ3(ω)\chi_3(\omega), respectively, are calculated as functions of frequency and temperature. In analogy with the static case, the dynamic model predicts a narrow frequency dependent peak in χ3(T,ω)\chi_3(T,\omega), which mimics a transition into a glass-like state.Comment: 15 pages, Revtex plus 5 eps figure

    3D BEM-based cooling-channel shape optimization for injection moulding processes

    Get PDF
    International audienceToday, around 30 % of manufactured plastic goods rely on injection moulding. The cooling time can represents more than 70 % of the injection cycle. Moreover, in order to avoid defects in the manufactured plastic parts, the temperature in the mould must be homogeneous. We propose in this paper a practical methodology to optimize both the position and the shape of the cooling channels in 3D injection moulding processes. For the evaluation of the temperature required both by the objective and the constraint functions, we must solve 3D heat-transfer problems via numerical simulation. We solve the heat-transfer problem using Boundary Element Method (BEM). This yields a reduction of the dimension of the computational space from 3D to 2D,avoiding full 3D remeshing: only the surface of the cooling channels needs to be remeshed at each evaluation required by the optimization algorithm. We propose a general optimization model that attempts at minimizing the desired overall low temperature of the plastic-part surface subject to constraints imposing homogeneity of the temperature. Encouraging preliminary results on two semi-industrial plastic parts show that our optimization methodology is viable

    Optimization of 3D Cooling Channels in Injection Molding using DRBEM and Model Reduction

    Get PDF
    Issu de : ESAFORM 2009 - 12th ESAFORM Conference on material forming, Enschede, THE NETHERLANDS, 27-29 April 2009International audienceToday, around 30% of manufactured plastic goods rely on injection moulding. The cooling time can represent more than 70% of the injection cycle. In this process, heat transfer during the cooling step has a great influence both on the quality of the final parts that are produced, and on the moulding cycle time. In the numerical solution of three-dimensional boundary value problems, the matrix size can be so large that it is beyond a computer capacity to solve it. To overcome this difficulty, we develop an iterative dual reciprocity boundary element method (DRBEM) to solve Poisson’s equation without the need of assembling a matrix. This yields a reduction of the computational space dimension from 3D to 2D, avoiding full 3D remeshing. Only the surface of the cooling channels needs to be remeshed at each evaluation required by the optimisation algorithm. For more efficiency, DRBEM computing results are extracted stored and exploited in order to construct a model with very few degrees of freedom. This approach is based on a model reduction technique known as proper orthogonal (POD) or Karhunen-Loùve decompositions. We introduce in this paper a practical methodology to optimise both the position and the shape of the cooling channels in 3D injection moulding processes. First, we propose an implementation of the model reduction in the 3D transient BEM solver. This reduction permits to reduce considerably the computing time required by each direct computation. Secondly, we present an optimisation methodology applied to different injection cooling problems. For example, we can minimize the maximal temperature on the cavity surface subject to a temperature uniformityconstraint. Thirdly, we compare our results obtained by our approach with experimental results to show that our optimisation methodology is viable

    Magnetic control of large room-temperature polarization

    Full text link
    Numerous authors have referred to room-temperature magnetic switching of large electric polarizations as The Holy Grail of magnetoelectricity.We report this long-sought effect using a new physical process of coupling between magnetic and ferroelectric relaxor nano-regions. Here we report magnetic switching between the normal ferroelectric state and the ferroelectric relaxor state. This gives both a new room-temperature, single-phase, multiferroic magnetoelectric, PbZr0.46Ti0.34Fe0.13W0.07O3, with polarization, loss (<4%), and resistivity (typically 108 -109 ohm.cm) equal to or superior to BiFeO3, and also a new and very large magnetoelectric effect: switching not from +Pr to negative Pr with applied H, but from Pr to zero with applied H of less than a Tesla. This switching of the polarization occurs not because of a conventional magnetically induced phase transition, but because of dynamic effects: Increasing H lengthens the relaxation time by x500 from 100 ?s, and it couples strongly the polarization relaxation and spin relaxations. The diverging polarization relaxation time accurately fits a modified Vogel-Fulcher Equation in which the freezing temperature Tf is replaced by a critical freezing field Hf that is 0.92 positive/negative 0.07 Tesla. This field dependence and the critical field Hc are derived analytically from the spherical random bond random field (SRBRF) model with no adjustable parameters and an E2H2 coupling. This device permits 3-state logic (+Pr,0,negative Pr) and a condenser with >5000% magnetic field change in its capacitance.Comment: 20 pages, 5 figure

    From second to first order transitions in a disordered quantum magnet

    Full text link
    We study the spin-glass transition in a disordered quantum model. There is a region in the phase diagram where quantum effects are small and the phase transition is second order, as in the classical case. In another region, quantum fluctuations drive the transition first order. Across the first order line the susceptibility is discontinuous and shows hysteresis. Our findings reproduce qualitatively observations on LiHox_xY1−x_{1-x}F4_4. We also discuss a marginally stable spin-glass state and derive some results previously obtained from the real-time dynamics of the model coupled to a bath.Comment: 4 pages, 3 figures, RevTe

    Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems

    Full text link
    In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly discussed the existence and nature of ferroelectric order in positionally disordered dipolar materials. Here we report further results and give a complete description of our work. Simulations of randomly frozen and dynamically disordered dipolar soft spheres are used to study ferroelectric ordering in non-crystalline systems. We also give a physical interpretation of the simulation results in terms of short- and long-range interactions. Cases where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models, respectively) are considered. It is found that the Ising model displays ferroelectric phases in frozen amorphous systems, while the XY and XYZ models form dipolar glass phases at low temperatures. In the dynamically disordered model the equations of motion are decoupled such that particle translation is completely independent of the dipolar forces. These systems spontaneously develop long-range ferroelectric order at nonzero temperature despite the absence of any fined-tuned short-range spatial correlations favoring dipolar order. Furthermore, since this is a nonequilibrium model we find that the paraelectric to ferroelectric transition depends on the particle mass. For the XY and XYZ models, the critical temperatures extrapolate to zero as the mass of the particle becomes infinite, whereas, for the Ising model the critical temperature is almost independent of mass and coincides with the ferroelectric transition found for the randomly frozen system at the same density. Thus in the infinite mass limit the results of the frozen amorphous systems are recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed. Submitted to Phisical Review E. Contact: [email protected]

    Ferroelectricity induced by interatomic magnetic exchange interaction

    Full text link
    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science[1-9]. However, the coexistence of magnetism and conventional ferroelectricity is physically unfavoured[10]. Recently several remedies have been proposed, e.g., improper ferroelectricity induced by specific magnetic[6] or charge orders[2]. Guiding by these theories, currently most research is focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature, consequently far from the practical application. Simple collinear magnets, which can have high magnetic transition temperature, have never been considered seriously as the candidates for multiferroics. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic (AFM) insulator MnO, can display a magnetically induced ferroelectricity under a biaxial strain

    Time reparametrization group and the long time behaviour in quantum glassy systems

    Full text link
    We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations, and within this language the long time behaviour of this model is controlled by a reparametrization group (Rp_pG) fixed point of the classical dynamics. The irrelevance of the quantum terms in the dynamical equations in the aging regime explains the classical nature of the violation of the fluctuation-dissipation theorem.Comment: 4 page

    Out of equilibrium dynamics of a Quantum Heisenberg Spin Glass

    Full text link
    We study the out of equilibrium dynamics of the infinite range quantum Heisenberg spin glass model coupled to a thermal relaxation bath. The SU(2) spin algebra is generalized to SU(N) and we analyse the large-N limit. The model displays a dynamical phase transition between a paramagnetic and a glassy phase. In the latter, the system remains out of equilibrium and displays an aging phenomenon, which we characterize using both analytical and numerical methods. In the aging regime, the quantum fluctuation-dissipation relation is violated and replaced at very long time by its classical generalization, as in models involving simple spin algebras studied previously. We also discuss the effect of a finite coupling to the relaxation baths and their possible forms. This work completes and justifies previous studies on this model using a static approach.Comment: Minor change
    • 

    corecore