Abstract

We study a dynamic model of relaxor ferroelectrics based on the spherical random-bond---random-field model and the Langevin equations of motion. The solution to these equations is obtained in the long-time limit where the system reaches an equilibrium state in the presence of random local electric fields. The complex dynamic linear and third-order nonlinear susceptibilities χ1(ω)\chi_1(\omega) and χ3(ω)\chi_3(\omega), respectively, are calculated as functions of frequency and temperature. In analogy with the static case, the dynamic model predicts a narrow frequency dependent peak in χ3(T,ω)\chi_3(T,\omega), which mimics a transition into a glass-like state.Comment: 15 pages, Revtex plus 5 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions