2,307 research outputs found
Dipole and monopole modes in the Bose-Hubbard model in a trap
The lowest-lying collective modes of a trapped Bose gas in an optical lattice
are studied in the Bose-Hubbard model. An exact diagonalization of the
Hamiltonian is performed in a one-dimensional five-particle system in order to
find the lowest few eigenstates. Dipole and breathing character of the
eigenstates is confirmed in the limit where the tunneling dominates the
dynamics, but under Mott-like conditions the excitations do not correspond to
oscillatory modes.Comment: 19 pages, 11 figures; submitted to Phys. Rev.
Existence of Long-Range Order for Trapped Interacting Bosons
We derive an inequality governing ``long range'' order for a localized
Bose-condensed state, relating the condensate fraction at a given temperature
with effective curvature radius of the condensate and total particle number.
For the specific example of a one-dimensional, harmonically trapped dilute Bose
condensate, it is shown that the inequality gives an explicit upper bound for
the Thomas-Fermi condensate size which may be tested in current experiments.Comment: 4 pages, 1 figure, RevTex4. Title changed at the request of editors;
to appear in Phys. Rev. Letter
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
With realistic HFB calculations, using the D1S Gogny force, we reveal a
generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the
surface of superfluid nuclei. This study confirms and extends previous results
given in the literature that use more schematic approaches.Comment: 5 pages, 5 figure
Tunable Charge and Spin Seebeck Effects in Magnetic Molecular Junctions
We study the charge and spin Seebeck effects in a spin-1 molecular junction
as a function of temperature (T), applied magnetic field (H), and magnetic
anisotropy (D) using Wilson's numerical renormalization group. A hard-axis
magnetic anisotropy produces a large enhancement of the charge Seebeck
coefficient Sc (\sim k_B/|e|) whose value only depends on the residual
interaction between quasiparticles in the low temperature Fermi-liquid regime.
In the underscreened spin-1 Kondo regime, the high sensitivity of the system to
magnetic fields makes it possible to observe a sizable value for the spin
Seebeck coefficient even for magnetic fields much smaller than the Kondo
temperature. Similar effects can be obtain in C60 junctions where the control
parameter is the gap between a singlet and a triplet molecular state.Comment: 5 pages, 4 figure
Phase diagram of a Bose gas near a wide Feshbach resonance
In this paper, we study the phase diagram of a homogeneous Bose gas with a
repulsive interaction near a wide Feshbach resonance at zero temperature. The
Bose-Einstein-condensation (BEC) state of atoms is a metastable state. When the
scattering length exceeds a critical value depending on the atom density
, , the molecular excitation energy is imaginary and the atomic
BEC state is dynamically unstable against molecule formation. The BEC state of
diatomic molecules has lower energy, where the atomic excitation is gapped and
the molecular excitation is gapless. However when the scattering length is
above another critical value, , the molecular BEC state becomes a
unstable coherent mixture of atoms and molecules. In both BEC states, the
binding energy of diatomic molecules is reduced due to the many-body effect.Comment: 5 pages, 4 figure
Conservation, Dissipation, and Ballistics: Mesoscopic Physics beyond the Landauer-Buettiker Theory
The standard physical model of contemporary mesoscopic noise and transport
consists in a phenomenologically based approach, proposed originally by
Landauer and since continued and amplified by Buettiker (and others).
Throughout all the years of its gestation and growth, it is surprising that the
Landauer-Buettiker approach to mesoscopics has matured with scant attention to
the conservation properties lying at its roots: that is, at the level of actual
microscopic principles. We systematically apply the conserving sum rules for
the electron gas to clarify this fundamental issue within the standard
phenomenology of mesoscopic conduction. Noise, as observed in quantum point
contacts, provides the vital clue.Comment: 10 pp 3 figs, RevTe
Phase diagram of the one dimensional anisotropic Kondo-necklace model
The one dimensional anisotropic Kondo-necklace model has been studied by
several methods. It is shown that a mean field approach fails to gain the
correct phase diagram for the Ising type anisotropy. We then applied the spin
wave theory which is justified for the anisotropic case. We have derived the
phase diagram between the antiferromagnetic long range order and the Kondo
singlet phases. We have found that the exchange interaction (J) between the
itinerant spins and local ones enhances the quantum fluctuations around the
classical long range antiferromagnetic order and finally destroy the ordered
phase at the critical value, J_c. Moreover, our results show that the onset of
anisotropy in the XY term of the itinerant interactions develops the
antiferromagnetic order for J<J_c. This is in agreement with the qualitative
feature which we expect from the symmetry of the anisotropic XY interaction. We
have justified our results by the numerical Lanczos method where the structure
factor at the antiferromagnetic wave vector diverges as the size of system goes
to infinity.Comment: 9 pages and 9 eps figure
Collective modes of doped graphene and a standard 2DEG in a strong magnetic field: linear magneto-plasmons versus magneto-excitons
A doped graphene layer in the integer quantum Hall regime reveals a highly
unusual particle-hole excitation spectrum, which is calculated from the
dynamical polarizability in the random phase approximation. We find that the
elementary neutral excitations in graphene in a magnetic field are unlike those
of a standard two-dimensional electron gas (2DEG): in addition to the
upper-hybrid mode, the particle-hole spectrum is reorganized in linear
magneto-plasmons that disperse roughly parallel to , instead of
the usual horizontal (almost dispersionless) magneto-excitons. These modes
could be detected in an inelastic light scattering experiment.Comment: 8 pages, 3 figures. Version accepted for publication in Phys. Rev.
A predictive standard model for heavy electron systems
We propose a predictive standard model for heavy electron systems based on a
detailed phenomenological two-fluid description of existing experimental data.
It leads to a new phase diagram that replaces the Doniach picture, describes
the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid
measured below the lattice coherence temperature, T*, seen by many different
experimental probes, that marks the onset of collective hybridization, and
enables one to obtain important information on quantum criticality and the
superconducting/antiferromagnetic states at low temperatures. Because T* is
~J^2\rho/2, the nearest neighbor RKKY interaction, a knowledge of the
single-ion Kondo coupling, J, to the background conduction electron density of
states, \rho, makes it possible to predict Kondo liquid behavior, and to
estimate its maximum superconducting transition temperature in both existing
and newly discovered heavy electron families.Comment: 4 pages, 2 figures, submitted to J. Phys.: Conf. Ser. for SCES 201
Tomographic reconstruction of quantum correlations in excited Bose-Einstein condensates
We propose to use quantum tomography to characterize the state of a perturbed
Bose-Einstein condensate. We assume knowledge of the number of particles in the
zero-wave number mode and of density distributions in space at different times,
and we treat the condensate in the Bogoliubov approximation. For states that
can be treated with the Gross-Pitaevskii equation, we find that the
reconstructed density operator gives excellent predictions of the second
moments of the atomic creation- and annihilation operators, including the
one-body density matrix. Additional inclusion of the momentum distribution at
one point of time enables somewhat reliable predictions to be made for the
second moments for mixed states, making it possible to distinguish between
coherent and thermal perturbations of the condensate. Finally, we find that
with observation of the zero-wave number mode's anomalous second moment the
reconstructed density operator gives reliable predictions of the second moments
of locally amplitude squeezed states.Comment: 12 pages, 7 figure
- …