2,306 research outputs found

    Dipole and monopole modes in the Bose-Hubbard model in a trap

    Full text link
    The lowest-lying collective modes of a trapped Bose gas in an optical lattice are studied in the Bose-Hubbard model. An exact diagonalization of the Hamiltonian is performed in a one-dimensional five-particle system in order to find the lowest few eigenstates. Dipole and breathing character of the eigenstates is confirmed in the limit where the tunneling dominates the dynamics, but under Mott-like conditions the excitations do not correspond to oscillatory modes.Comment: 19 pages, 11 figures; submitted to Phys. Rev.

    Existence of Long-Range Order for Trapped Interacting Bosons

    Full text link
    We derive an inequality governing ``long range'' order for a localized Bose-condensed state, relating the condensate fraction at a given temperature with effective curvature radius of the condensate and total particle number. For the specific example of a one-dimensional, harmonically trapped dilute Bose condensate, it is shown that the inequality gives an explicit upper bound for the Thomas-Fermi condensate size which may be tested in current experiments.Comment: 4 pages, 1 figure, RevTex4. Title changed at the request of editors; to appear in Phys. Rev. Letter

    Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei

    Get PDF
    With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches.Comment: 5 pages, 5 figure

    Tunable Charge and Spin Seebeck Effects in Magnetic Molecular Junctions

    Full text link
    We study the charge and spin Seebeck effects in a spin-1 molecular junction as a function of temperature (T), applied magnetic field (H), and magnetic anisotropy (D) using Wilson's numerical renormalization group. A hard-axis magnetic anisotropy produces a large enhancement of the charge Seebeck coefficient Sc (\sim k_B/|e|) whose value only depends on the residual interaction between quasiparticles in the low temperature Fermi-liquid regime. In the underscreened spin-1 Kondo regime, the high sensitivity of the system to magnetic fields makes it possible to observe a sizable value for the spin Seebeck coefficient even for magnetic fields much smaller than the Kondo temperature. Similar effects can be obtain in C60 junctions where the control parameter is the gap between a singlet and a triplet molecular state.Comment: 5 pages, 4 figure

    Phase diagram of a Bose gas near a wide Feshbach resonance

    Full text link
    In this paper, we study the phase diagram of a homogeneous Bose gas with a repulsive interaction near a wide Feshbach resonance at zero temperature. The Bose-Einstein-condensation (BEC) state of atoms is a metastable state. When the scattering length aa exceeds a critical value depending on the atom density nn, na3>0.035na^3>0.035, the molecular excitation energy is imaginary and the atomic BEC state is dynamically unstable against molecule formation. The BEC state of diatomic molecules has lower energy, where the atomic excitation is gapped and the molecular excitation is gapless. However when the scattering length is above another critical value, na3>0.0164na^3>0.0164, the molecular BEC state becomes a unstable coherent mixture of atoms and molecules. In both BEC states, the binding energy of diatomic molecules is reduced due to the many-body effect.Comment: 5 pages, 4 figure

    Conservation, Dissipation, and Ballistics: Mesoscopic Physics beyond the Landauer-Buettiker Theory

    Full text link
    The standard physical model of contemporary mesoscopic noise and transport consists in a phenomenologically based approach, proposed originally by Landauer and since continued and amplified by Buettiker (and others). Throughout all the years of its gestation and growth, it is surprising that the Landauer-Buettiker approach to mesoscopics has matured with scant attention to the conservation properties lying at its roots: that is, at the level of actual microscopic principles. We systematically apply the conserving sum rules for the electron gas to clarify this fundamental issue within the standard phenomenology of mesoscopic conduction. Noise, as observed in quantum point contacts, provides the vital clue.Comment: 10 pp 3 figs, RevTe

    Phase diagram of the one dimensional anisotropic Kondo-necklace model

    Full text link
    The one dimensional anisotropic Kondo-necklace model has been studied by several methods. It is shown that a mean field approach fails to gain the correct phase diagram for the Ising type anisotropy. We then applied the spin wave theory which is justified for the anisotropic case. We have derived the phase diagram between the antiferromagnetic long range order and the Kondo singlet phases. We have found that the exchange interaction (J) between the itinerant spins and local ones enhances the quantum fluctuations around the classical long range antiferromagnetic order and finally destroy the ordered phase at the critical value, J_c. Moreover, our results show that the onset of anisotropy in the XY term of the itinerant interactions develops the antiferromagnetic order for J<J_c. This is in agreement with the qualitative feature which we expect from the symmetry of the anisotropic XY interaction. We have justified our results by the numerical Lanczos method where the structure factor at the antiferromagnetic wave vector diverges as the size of system goes to infinity.Comment: 9 pages and 9 eps figure

    Collective modes of doped graphene and a standard 2DEG in a strong magnetic field: linear magneto-plasmons versus magneto-excitons

    Full text link
    A doped graphene layer in the integer quantum Hall regime reveals a highly unusual particle-hole excitation spectrum, which is calculated from the dynamical polarizability in the random phase approximation. We find that the elementary neutral excitations in graphene in a magnetic field are unlike those of a standard two-dimensional electron gas (2DEG): in addition to the upper-hybrid mode, the particle-hole spectrum is reorganized in linear magneto-plasmons that disperse roughly parallel to ω=vFq\omega=v_F q, instead of the usual horizontal (almost dispersionless) magneto-excitons. These modes could be detected in an inelastic light scattering experiment.Comment: 8 pages, 3 figures. Version accepted for publication in Phys. Rev.

    A predictive standard model for heavy electron systems

    Full text link
    We propose a predictive standard model for heavy electron systems based on a detailed phenomenological two-fluid description of existing experimental data. It leads to a new phase diagram that replaces the Doniach picture, describes the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid measured below the lattice coherence temperature, T*, seen by many different experimental probes, that marks the onset of collective hybridization, and enables one to obtain important information on quantum criticality and the superconducting/antiferromagnetic states at low temperatures. Because T* is ~J^2\rho/2, the nearest neighbor RKKY interaction, a knowledge of the single-ion Kondo coupling, J, to the background conduction electron density of states, \rho, makes it possible to predict Kondo liquid behavior, and to estimate its maximum superconducting transition temperature in both existing and newly discovered heavy electron families.Comment: 4 pages, 2 figures, submitted to J. Phys.: Conf. Ser. for SCES 201

    Polarizability and dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit at finite temperatures

    Full text link
    Correlation functions related to the dynamic density response of the one-dimensional Bose gas in the model of Lieb and Liniger are calculated. An exact Bose-Fermi mapping is used to work in a fermionic representation with a pseudopotential Hamiltonian. The Hartree-Fock and generalized random phase approximations are derived and the dynamic polarizability is calculated. The results are valid to first order in 1/\gamma where \gamma is Lieb-Liniger coupling parameter. Approximations for the dynamic and static structure factor at finite temperature are presented. The results preclude superfluidity at any finite temperature in the large-\gamma regime due to the Landau criterion. Due to the exact Bose-Fermi duality, the results apply for spinless fermions with weak p-wave interactions as well as for strongly interacting bosons.Comment: 13 pages, 5 figures, the journal versio
    • …
    corecore