190 research outputs found

    Children with severe malnutrition: can those at highest risk of death be identified with the WHO protocol?

    Get PDF
    Background With strict adherence to international recommended treatment guidelines, the case fatality for severe malnutrition ought to be less than 5%. In African hospitals, fatality rates of 20% are common and are often attributed to poor training and faulty case management. Improving outcome will depend upon the identification of those at greatest risk and targeting limited health resources. We retrospectively examined the major risk factors associated with early (<48 h) and late in-hospital death in children with severe malnutrition with the aim of identifying admission features that could distinguish a high-risk group in relation to the World Health Organization (WHO) guidelines. Methods and Findings Of 920 children in the study, 176 (19%) died, with 59 (33%) deaths occurring within 48 h of admission. Bacteraemia complicated 27% of all deaths: 52% died before 48 h despite 85% in vitro antibiotic susceptibility of cultured organisms. The sensitivity, specificity, and likelihood ratio of the WHO-recommended “danger signs” (lethargy, hypothermia, or hypoglycaemia) to predict early mortality was 52%, 84%, and 3.4% (95% confidence interval [CI] = 2.2 to 5.1), respectively. In addition, four bedside features were associated with early case fatality: bradycardia, capillary refill time greater than 2 s, weak pulse volume, and impaired consciousness level; the presence of two or more features was associated with an odds ratio of 9.6 (95% CI = 4.8 to 19) for early fatality (p < 0.0001). Conversely, the group of children without any of these seven features, or signs of dehydration, severe acidosis, or electrolyte derangements, had a low fatality (7%). Conclusions Formal assessment of these features as emergency signs to improve triage and to rationalize manpower resources toward the high-risk groups is required. In addition, basic clinical research is necessary to identify and test appropriate supportive treatments

    Profile: The Kilifi Health and Demographic Surveillance System (KHDSS).

    Get PDF
    The Kilifi Health and Demographic Surveillance System (KHDSS), located on the Indian Ocean coast of Kenya, was established in 2000 as a record of births, pregnancies, migration events and deaths and is maintained by 4-monthly household visits. The study area was selected to capture the majority of patients admitted to Kilifi District Hospital. The KHDSS has 260 000 residents and the hospital admits 4400 paediatric patients and 3400 adult patients per year. At the hospital, morbidity events are linked in real time by a computer search of the population register. Linked surveillance was extended to KHDSS vaccine clinics in 2008. KHDSS data have been used to define the incidence of hospital presentation with childhood infectious diseases (e.g. rotavirus diarrhoea, pneumococcal disease), to test the association between genetic risk factors (e.g. thalassaemia and sickle cell disease) and infectious diseases, to define the community prevalence of chronic diseases (e.g. epilepsy), to evaluate access to health care and to calculate the operational effectiveness of major public health interventions (e.g. conjugate Haemophilus influenzae type b vaccine). Rapport with residents is maintained through an active programme of community engagement. A system of collaborative engagement exists for sharing data on survival, morbidity, socio-economic status and vaccine coverage

    The indirect health effects of malaria estimated from health advantages of the sickle cell trait

    Get PDF
    Most estimates of the burden of malaria are based on its direct impacts; however, its true burden is likely to be greater because of its wider effects on overall health. Here we estimate the indirect impact of malaria on children’s health in a case-control study, using the sickle cell trait (HbAS), a condition associated with a high degree of specific malaria resistance, as a proxy indicator for an effective intervention. We estimate the odds ratios for HbAS among cases (all children admitted to Kilifi County Hospital during 2000–2004) versus community controls. As expected, HbAS protects strongly against malaria admissions (aOR 0.26; 95%CI 0.22–0.31), but it also protects against other syndromes, including neonatal conditions (aOR 0.79; 0.67–0.93), bacteraemia (aOR 0.69; 0.54–0.88) and severe malnutrition (aOR 0.67; 0.55–0.83). The wider health impacts of malaria should be considered when estimating the potential added benefits of effective malaria interventions

    Lactate levels in severe malarial anaemia are associated with haemozoin-containing neutrophils and low levels of IL-12

    Get PDF
    BACKGROUND: Hyperlactataemia is often associated with a poor outcome in severe malaria in African children. To unravel the complex pathophysiology of this condition the relationship between plasma lactate levels, parasite density, pro- and anti-inflammatory cytokines, and haemozoin-containing leucocytes was studied in children with severe falciparum malarial anaemia. METHODS: Twenty-six children with a primary diagnosis of severe malarial anaemia with any asexual Plasmodium falciparum parasite density and Hb < 5 g/dL were studied and the association of plasma lactate levels and haemozoin-containing leucocytes, parasite density, pro- and anti-inflammatory cytokines was measured. The same associations were measured in non-severe malaria controls (N = 60). RESULTS: Parasite density was associated with lactate levels on admission (r = 0.56, P < 0.005). Moreover, haemozoin-containing neutrophils and IL-12 were strongly associated with plasma lactate levels, independently of parasite density (r = 0.60, P = 0.003 and r = -0.46, P = 0.02, respectively). These associations were not found in controls with uncomplicated malarial anaemia. CONCLUSION: These data suggest that blood stage parasites, haemozoin and low levels of IL-12 may be associated with the development of hyperlactataemia in severe malarial anaemia

    A prospective study of vaginal trichomoniasis and HIV-1 shedding in women on antiretroviral therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Trichomonas vaginalis </it>has been associated with increased vaginal HIV-1 RNA shedding in antiretroviral therapy (ART)-naïve women. The effect of trichomoniasis on vaginal HIV-1 shedding in ART-treated women has not been characterized. We tested the hypothesis that <it>T. vaginalis </it>infection would increase vaginal HIV-1 RNA shedding in women on ART, and that successful treatment would reduce vaginal HIV-1 RNA levels.</p> <p>Methods</p> <p>We conducted a prospective cohort study including monthly follow-up of 147 women receiving ART in Mombasa, Kenya. Those with <it>T. vaginalis </it>infection, defined by the presence of motile trichomonads on vaginal saline wet mount, received treatment with single dose metronidazole (2 g). Test of cure was performed at the next monthly visit. Using the pre-infection visit as the reference category, we compared detection of vaginal HIV-1 RNA before versus during and after infection using generalized estimating equations. A cut-off of 100 HIV-1 RNA copies/swab was used as the lower limit for linear quantitation.</p> <p>Results</p> <p>Among 31 women treated for trichomoniasis, the concentration of vaginal HIV-1 RNA was above the limit for quantitation before, during, and after <it>T. vaginalis </it>infection in 4 (13% [95% CI 4% - 30%]), 4 (13% [95% CI 4% - 30%]), and 5 (16% [95% confidence interval {CI} 5% - 34%]) women respectively. After adjusting for potential confounding factors, we could detect no difference in the likelihood of detecting vaginal HIV-1 RNA before versus during infection (odds ratio [OR] 1.41, 95% CI 0.23 - 8.79, p = 0.7). In addition, detection of HIV-1 RNA was similar before infection versus after successful treatment (OR 0.68, 95% CI (0.13 - 3.45), p = 0.6).</p> <p>Conclusion</p> <p>Detection of vaginal HIV-1 RNA during ART was uncommon at visits before, during and after <it>T. vaginalis </it>infection.</p

    Homozygosity and risk of childhood death due to invasive bacterial disease

    Get PDF
    BACKGROUND: Genetic heterozygosity is increasingly being shown to be a key predictor of fitness in natural populations, both through inbreeding depression, inbred individuals having low heterozygosity, and also through chance linkage between a marker and a gene under balancing selection. One important component of fitness that is often highlighted is resistance to parasites and other pathogens. However, the significance of equivalent loci in human populations remains unclear. Consequently, we performed a case-control study of fatal invasive bacterial disease in Kenyan children using a genome-wide screen with microsatellite markers. METHODS: 148 cases, comprising children aged <13 years who died of invasive bacterial disease, (variously, bacteraemia, bacterial meningitis or neonatal sepsis) and 137 age-matched, healthy children were sampled in a prospective study conducted at Kilifi District Hospital, Kenya. Samples were genotyped for 134 microsatellite markers using the ABI LD20 marker set and analysed for an association between homozygosity and mortality. RESULTS: At five markers homozygosity was strongly associated with mortality (odds ratio range 4.7 - 12.2) with evidence of interactions between some markers. Mortality was associated with different non-overlapping marker groups in Gram positive and Gram negative bacterial disease. Homozygosity at susceptibility markers was common (prevalence 19-49%) and, with the large effect sizes, this suggests that bacterial disease mortality may be strongly genetically determined. CONCLUSION: Balanced polymorphisms appear to be more widespread in humans than previously appreciated and play a critical role in modulating susceptibility to infectious disease. The effect sizes we report, coupled with the stochasticity of exposure to pathogens suggests that infection and mortality are far from random due to a strong genetic basis

    The epidemiology of sickle cell disease in children recruited in infancy in Kilifi, Kenya: a prospective cohort study.

    Get PDF
    BACKGROUND: Sickle cell disease is the most common severe monogenic disorder in humans. In Africa, 50-90% of children born with sickle cell disease die before they reach their fifth birthday. In this study, we aimed to describe the comparative incidence of specific clinical outcomes among children aged between birth and 5 years with and without sickle cell disease, who were resident within the Kilifi area of Kenya. METHODS: This prospective cohort study was done on members of the Kilifi Genetic Birth Cohort Study (KGBCS) on the Indian Ocean coast of Kenya. Recruitment to the study was facilitated through the Kilifi Health and Demographic Surveillance System (KHDSS), which covers a resident population of 260 000 people, and was undertaken between Jan 1, 2006, and April 30, 2011. All children who were born within the KHDSS area and who were aged 3-12 months during the recruitment period were eligible for inclusion. Participants were tested for sickle cell disease and followed up for survival status and disease-specific admission to Kilifi County Hospital by passive surveillance until their fifth birthday. Children with sickle cell disease were offered confirmatory testing and care at a dedicated outpatient clinic. FINDINGS: 15 737 infants were recruited successfully to the KGBCS, and 128 (0·8%) of these infants had sickle cell disease, of whom 70 (54·7%) enrolled at the outpatient clinic within 12 months of recruitment. Mortality was higher in children with sickle cell disease (58 per 1000 person-years of observation, 95% CI 40-86) than in those without sickle cell disease (2·4 per 1000 person-years of observation, 2·0-2·8; adjusted incidence rate ratio [IRR] 23·1, 95% CI 15·1-35·3). Among children with sickle cell disease, mortality was lower in those who enrolled at the clinic (adjusted IRR 0·26, 95% CI 0·11-0·62) and in those with higher levels of haemoglobin F (HbF; adjusted IRR 0·40, 0·17-0·94). The incidence of admission to hospital was also higher in children with sickle cell disease than in children without sickle cell disease (210 per 1000 person-years of observation, 95% CI 174-253, vs 43 per 1000 person-years of observation, 42-45; adjusted IRR 4·80, 95% CI 3·84-6·15). The most common reason for admission to hospital among those with sickle cell disease was severe anaemia (incidence 48 per 1000 person-years of observation, 95% CI 32-71). Admission to hospital was lower in those with a recruitment HbF level above the median (IRR 0·43, 95% CI 0·24-0·78; p=0·005) and those who were homozygous for α-thalassaemia (0·07, 0·01-0·83; p=0·035). INTERPRETATION: Although morbidity and mortality were high in young children with sickle cell disease in this Kenyan cohort, both were reduced by early diagnosis and supportive care. The emphasis must now move towards early detection and prevention of long-term complications of sickle cell disease. FUNDING: Wellcome Trust
    corecore