48 research outputs found

    Class II ADP-ribosylation factors are required for efficient secretion of Dengue viruses

    Get PDF
    This article is available open access through the publisher’s website.Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.Research Fund for Control of Infectious Diseases of Hong Kong and BNP Paribas Corporate and Investment Banking

    The challenge of west nile virus in Europe: Knowledge gaps and research priorities

    Get PDF
    West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries

    Impact of Chikungunya Virus Infection on Health Status and Quality of Life: A Retrospective Cohort Study

    Get PDF
    BACKGROUND:Persistent symptoms, mainly joint and muscular pain and depression, have been reported several months after Chikungunya virus (CHIKV) infection. Their frequency and their impact on quality of life have not been compared with those of an unexposed population. In the present study, we aimed to describe the frequency of prolonged clinical manifestations of CHIKV infection and to measure the impact on quality of life and health care consumption in comparison with that of an unexposed population, more than one year after infection. METHODOLOGY/PRINCIPAL FINDINGS:In a retrospective cohort study, 199 subjects who had serologically confirmed CHIKV infection (CHIK+) were compared with 199 sero-negative subjects (CHIK-) matched for age, gender and area of residence in La RĂ©union Island. Following an average time of 17 months from the acute phase of infection, participants were interviewed by telephone about current symptoms, medical consumption during the last 12 months and quality of life assessed by the 12-items Short-Form Health Survey (SF-12) scale. At the time of study, 112 (56%) CHIK+ persons reported they were fully recovered. CHIK+ complained more frequently than CHIK- of arthralgia (relative risk = 1.9; 95% confidence interval: 1.6-2.2), myalgia (1.9; 1.5-2.3), fatigue (2.3; 1.8-3), depression (2.5; 1.5-4.1) and hair loss (3.8; 1.9-7.6). There was no significant difference between CHIK+ and CHIK- subjects regarding medical consumption in the past year. The mean (SD) score of the SF-12 Physical Component Summary was 46.4 (10.8) in CHIK+ versus 49.1 (9.3) in CHIK- (p = 0.04). There was no significant difference between the two groups for the Mental Component Summary. CONCLUSIONS/SIGNIFICANCE:More than one year following the acute phase of infection, CHIK+ subjects reported more disabilities than those who were CHIK-. These persistent disabilities, however, have no significant influence on medical consumption, and the impact on quality of life is moderate

    Biologie du virus chikungunya : brève revue de ce qu’on ne sait toujours pas

    No full text
    International audienceResponsible for a massive outbreak in the Indian Ocean in 2005-2006, the chikungunya virus is also reemerging in India where it has already infected over a million persons. Imported cases of the disease are reported in Asia, USA, and Europe, where a small epidemic occurred, due to transmission by local mosquitoes. Chikungunya virus is an alphavirus (Togaviridae family) that usually induces an acute illness characterized by fever, rash, and painful, incapacitating arthralgia a few days after being bitten by an infected mosquito, but recurrent joint pains are frequent. Unusual severe forms of the disease are also being reported that emphasize the importance of close monitoring of arboviruses in more fragile populations, such as the elderly and the newborns. Alphaviruses have generally been studied out of their epidemic context, leading to a large knowledge of their molecular features, and a much narrower understanding of their epidemiology and induced pathogenesis. Deciphering chikungunya virus specific molecular features as well as how the virus interacts with its vector and with its host are key to foresee, prevent and manage future epidemics, as well as prevent, treat or cure chikungunya disease.Responsable d’une épidémie massive dans l’océan Indien de 2005 à 2006, le virus chikungunya a également réémergé en Inde où il a déjà infecté plus d’un million de personnes. Des cas importés de la maladie ont été décrits en Asie, aux États-Unis, et en Europe, où une petite épidémie est survenue grâce à la transmission du virus par des moustiques autochtones. Le virus chikungunya est un alphavirus (famille des Togaviridae) qui induit habituellement une maladie aiguë, caractérisée par de la fièvre, des éruptions cutanées et des arthralgies douloureuses et handicapantes quelques jours après la piqûre du moustique, mais des manifestations récurrentes de douleurs articulaires sont fréquentes. Des formes sévères de la maladie ont aussi été rapportées, soulignant l’importance d’une surveillance accrue des arboviroses chez des populations fragiles, telles les personnes âgées et les nouveau-nés. Les alphavirus ont généralement été étudiés hors de leur contexte épidémique naturel, menant à une connaissance approfondie de leur aspect moléculaire, mais à une compréhension beaucoup moins étendue de leur épidémiologie et de la pathogenèse qu’ils induisent. Comprendre la biologie moléculaire du virus chikungunya, mais aussi la façon dont il interagit avec son vecteur ainsi que son hôte est indispensable pour prévoir, éviter et contrôler les prochaines épidémies, ainsi que pour éviter, traiter ou soigner la maladie

    Role of co-stimulation in CD8+ T cell activation

    No full text

    Mosquito homolog of the La autoantigen binds to Sindbis virus RNA.

    Get PDF
    We have isolated a 50-kDa mosquito protein that binds with high affinity to a riboprobe representing the 3' end of the minus strand of Sindbis virus RNA. The isolated protein has been used to obtain cDNA clones encoding this protein that have been sequenced and used to express the protein in large amounts. Sequence comparisons make clear that this protein is the mosquito homolog of the La autoantigen. The N-terminal half of the protein shares considerable sequence identity with the human La protein, the rat La protein, and the recently identified Drosophila melanogaster homolog. There is one stretch of 100 amino acids in the N-terminal domain in which 48 residues are identical in all four proteins. In contrast, the C-terminal domain of the mosquito protein shares little identity with any of the other three proteins. We have also shown that the mosquito protein, the human protein, and a putative chicken homolog of the La protein cross-react immunologically and, thus, all share antigenic epitopes. The mosquito La protein is primarily nuclear in location, but significant amounts are present in the cytoplasm, as is the case for the La proteins of other species. The equilibrium constant for the binding of the expressed mosquito La protein to the Sindbis virus riboprobe is 15.4 nM, and thus the affinity of binding is high enough to be physiologically relevant. Furthermore, the conservation of this protein in the animal kingdom may be significant, because Sindbis virus utilizes mosquitoes, birds, and mammals as hosts. We propose that the interactions we observe between the La protein and toes, birds, and mammals as hosts. We propose that the interactions we observe between the La protein and a putative promoter in the Sindbis virus genome are significant for Sindbis virus RNA replication

    Cellular proteins bind to the 3' end of Sindbis virus minus-strand RNA.

    Get PDF
    Forty-four nucleotides at the 5' terminus of the genomic RNA of Sindbis virus can form a stable stem-loop structure and have been shown previously to be important for viral replication. The structure formed by the complement of this sequence at the 3' end of the minus-strand RNA has been proposed to be a promoter for RNA replication and as such might be bound in a specific fashion by proteins of either cellular or viral origin. Short oligonucleotide probes (either 62 or 132 nucleotides) representing the 3'-terminal sequence of the minus strand were prepared. When added to extracts from infected or uninfected cells, these probes were bound by cellular proteins, as evidenced by a shift in the electrophoretic mobility of the (labeled) oligonucleotide. Competition experiments confirmed the specificity of the interaction. Proteins of apparent molecular sizes 42 and 44 kDa, and to a lesser extent 52 kDa, could be cross-linked to the minus-sense probes by UV irradiation. A mutant minus-strand probe identical to the longer probe except for a single-nucleotide deletion corresponding to nucleotide 5 in the genomic RNA, which is lethal for the virus, was also found to bind the same proteins as the wild-type probe. The half-life of the mutant probe-cellular protein complex was threefold longer than that of the wild-type complex, however, indicating that the mutant probe was bound more tightly than the wild-type probe. We hypothesize that the binding of cellular factors may be transiently required for initiation of transcription of plus-strand RNA from the minus-strand template and that overly tight binding of such factors is deleterious for RNA replication

    Multiple binding sites for cellular proteins in the 3' end of Sindbis alphavirus minus-sense RNA.

    Get PDF
    The 3' end of Sindbis virus minus-sense RNA was tested for its ability to bind proteins in mosquito cell extracts, using labeled riboprobes that represented different parts of this region. We found four domains in the first 250 nucleotides that could bind the same 50- and 52-kDa proteins, three with high affinity and one with low affinity, whereas tested domains outside this region did not bind these proteins. The first binding domain was found in the first 60 nucleotides, which represents the complement of the 5'-nontranslated region, the second in the next 60 nucleotides, the third in the following 60 nucleotides, and the fourth between nucleotides 194 and 249 (all numbering is 3' to 5'). The relative binding constants, Kr, of the first, second, and fourth sites were similar, whereas that of domain 2 was fivefold less. Deletion mapping of the first domain showed that the first 10 nucleotides were critical for binding. Deletion of nucleotides 2 to 4, deletion or replacement of nucleotide 5, or deletion of the first 15 nucleotides was deleterious for binding, deletion of nucleotides 10 to 15, 26 to 40, or 41 to 55 had little effect on the binding, and deletion of nucleotides 15 to to 25 increased the binding affinity. We also found that the corresponding riboprobes derived from two other alphaviruses, Ross River virus and Semliki Forest virus, and from rubella virus were also able to interact with the 50- and 52-kDa proteins. The Kr value for the Semliki Forest virus probe was similar to that for the Sindbis virus probe, while that for the Ross River virus probe was four times greater. The rubella virus probe was bound only weakly, consistent with the fact that mosquito cells are not permissive for rubella virus replication. We suggest that the binding of the 50- and 52-kDa proteins to the 3' end of alphavirus minus-sense RNA represents an important step in the initiation of RNA replication

    A transcript from the S segment of the Germiston bunyavirus is uncapped and codes for the nucleoprotein and a nonstructural protein.

    No full text
    Analysis of the RNAs present in BHK-21 cells infected with Germiston virus showed that the transcripts from the L and M segments have a size similar to that of their template, whereas two types of complementary RNA are transcribed from the S segment. One, S1, is a full-length "plus" RNA strand (antigenome), and the other, S2, is an incomplete plus RNA strand which serves as mRNA for at least the synthesis of the N protein and a virus-specific nonstructural polypeptide, p12. The 5' ends of these two transcripts appeared to be identical and complementary to the 3' ends of the viral RNA. Our results suggest that transcription of the S fragment either stops 100 to 150 nucleotides from the 5' end of the template, generating an S2 molecule, or continues, generating an S1 molecule. Neither the S1 antigenome nor the S2 mRNA molecules were polyadenylated at their 3' ends or capped at their 5' ends
    corecore