4 research outputs found

    Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    Full text link
    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.Comment: 20 pages; accepted for publication in A

    The Radio Observatory on the Lunar Surface for Solar studies

    Get PDF
    Abstract The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night. ROLSS is envisioned as an interferometric array, because a single aperture would be impractically large. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP) located at the center. The Y configuration for the antenna arms both allows for the formation of reasonably high dynamic range images on short time scales as well as relatively easy deployment. Each antenna arm is a linear strip of polyimide film (e.g., Kaptone) on which 16 science antennas are located by depositing a conductor (e.g., silver). The antenna arms can be rolled for transport, with deployment consisting of unrolling the rolls. Each science antenna is a single polarization dipole. The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. The CEP itself houses the receivers for the science antennas, the command and data handling hardware, and, mounted externally, the downlink antenna. We have conducted two experiments relevant to the ROLSS concept. First, we deployed a proof-of-concept science antenna. Comparison of the impedance of the antenna feed points with simulations showed a high level of agreement, lending credence to the antenna concept. Second, we exposed a sample of space-qualified polyimide film, with a silver coating on one side, to temperature cycling and UV 2011) 1942-1957 exposure designed to replicate a year on the lunar surface. No degradation of the polyimide film's material or electric properties was found. Both of these tests support the notion of using polyimide-film based antennas. The prime science mission favors an equatorial site, and a site on the limb could simplify certain aspects of the instrument design. A site on the lunar near side is sufficient for meeting the science goals. While the site should be of relatively low relief topography, the entire site does not have to be flat as the fraction of the area occupied by the antenna arms is relatively small ($0.3%). Further, the antenna arms do not have to lay flat as deviations of ±1 m are still small relative to the observational wavelengths. Deployment could be accomplished either with astronauts, completely robotically, or via a combination of crewed and robotic means. Future work for the ROLSS concept includes more exhaustive testing of the radio frequency (RF) and environmental suitability of polyimide film-based science antennas, ultra-low power electronics in order to minimize the amount of power storage needed, batteries with a larger temperature range for both survival and operation, and rovers (robotic, crewed, or both) for deployment. The ROLSS array could also serve as the precursor to a larger array on the far side of the Moon for astrophysical and cosmological studies
    corecore