55 research outputs found
Paraconductivity of K-doped SrFe2As2 superconductor
Paraconductivity of the optimally K-doped SrFe2As2 superconductor is
investigated within existing fluctuation mechanisms. The in-plane excess
conductivity has been measured in high quality single crystals, with a sharp
superconducting transition at Tc=35.5K and a transition width less than 0.3K.
The data have been also acquired in external magnetic field up to 14T. We show
that the fluctuation conductivity data in zero field and for temperatures close
to Tc, can be explained within a three-dimensional Lawrence-Doniach theory,
with a negligible Maki-Thompson contribution. In the presence of the magnetic
field, it is shown that paraconductivity obeys the three-dimensional
Ullah-Dorsey scaling law, above 2T and for H||c. The estimated upper critical
field and the coherence length nicely agree with the available experimental
data.Comment: 12 pages, 5 figure
Subthreshold antiproton production in proton-carbon reactions
Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-)
production in proton-nucleus reactions are described at projectile energies
between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus
reaction as an incoherent sum over collisions of the projectile with a varying
number of target nucleons. It samples complete events and allows thus for the
simultaneous consideration of all particle species measured. The overall
reproduction of the data is quite satisfactory. It is shown that the
contributions from the interaction of the projectile with groups of several
target nucleons are decisive for the description of subthreshold production.
Since the collective features of subthreshold production become especially
significant far below the threshold, the results are extrapolated down to COSY
energies. It is concluded that an antiproton measurement at ANKE-COSY should be
feasible, if the high background of other particles can be efficiently
suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2:
Modification of text due to demands of referee
Semiconductor Spintronics
Spintronics refers commonly to phenomena in which the spin of electrons in a
solid state environment plays the determining role. In a more narrow sense
spintronics is an emerging research field of electronics: spintronics devices
are based on a spin control of electronics, or on an electrical and optical
control of spin or magnetism. This review presents selected themes of
semiconductor spintronics, introducing important concepts in spin transport,
spin injection, Silsbee-Johnson spin-charge coupling, and spindependent
tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling.
Depending on the crystal symmetries of the material, as well as on the
structural properties of semiconductor based heterostructures, the spin-orbit
coupling takes on different functional forms, giving a nice playground of
effective spin-orbit Hamiltonians. The effective Hamiltonians for the most
relevant classes of materials and heterostructures are derived here from
realistic electronic band structure descriptions. Most semiconductor device
systems are still theoretical concepts, waiting for experimental
demonstrations. A review of selected proposed, and a few demonstrated devices
is presented, with detailed description of two important classes: magnetic
resonant tunnel structures and bipolar magnetic diodes and transistors. In most
cases the presentation is of tutorial style, introducing the essential
theoretical formalism at an accessible level, with case-study-like
illustrations of actual experimental results, as well as with brief reviews of
relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
Diverse Modes of Reactivity of 6‐(Chloromethyl)‐6‐methylfulvene
The title compound exhibits a number of modes of reactivity toward nucleophiles/bases owing to the presence of several electrophilic and potentially nucleophilic sites in the molecule. We explored the reactions of 6-(chloromethyl)-6-methylfulvene with oxygen and nitrogen nucleophiles and bases as well as a carbon-based nucleophile (an enamine) and realized all possible reactivity modes predicted on the basis of electrophilic and nucleophilic positions in this compound.United States Department of Health & Human Services National Institutes of Health (NIH) - USA - SC1 GM082340National Science Foundation (NSF) - CHE-1565852 - CHE-1228656United States Department of Health & Human Services National Institutes of Health (NIH) - USA - R25-GM059298 Appeared in source as:NIH MBRS-RISE scholarshipNIH-MS-PhD Bridge scholarship - R-25-GM048972National Science Foundation (NSF) NSF - Directorate for Mathematical & Physical Sciences (MPS) - 156585
Mechanical behavior of Ti-Ta-based surface alloy fabricated on TiNi SMA by pulsed electron-beam melting of film/substrate system
The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on “Ti70Ta30(1 μm) coating/NiTi substrate” system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α′′ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (<20 nm) average grain sizes which provide a gradual transition of the mechanical parameters to the values of the NiTi substrate
- …