13,237 research outputs found
The optical variability of the narrow line Seyfert 1 galaxy IRAS 13224-3809
We report on a short optical monitoring programme of the narrow-line Seyfert
1 Galaxy IRAS 13224-3809. Previous X-ray observations of this object have shown
persistent giant variability. The degree of variability at other wavelengths
may then be used to constrain the conditions and emission processes within the
nucleus. Optical variability is expected if the electron population responsible
for the soft X-ray emission is changing rapidly and Compton-upscattering
infrared photons in the nucleus, or if the mechanism responsible for X-ray
emission causes all the emission processes to vary together. We find that there
is no significant optical variability with a firm upper limit of 2 per cent and
conclude that the primary soft X-ray emission region produces little of the
observed optical emission. The X-ray and optical emission regions must be
physically distinct and any reprocessing of X-rays into the optical waveband
occurs some distance from the nucleus. The lack of optical variability
indicates that the energy density of infrared radiation in the nucleus is at
most equal to that of the ultraviolet radiation since little is upscattered
into the optical waveband. The extremely large X-ray variability of IRAS
13224-3809 may be explained by relativistic boosting of more modest variations.
Although such boosting enhances X-ray variability over optical variability,
this only partially explains the lack of optical variability.Comment: 5 pages with 8 postscript figures. Accepted for publication in MNRA
Discovery of Two High-Magnetic-Field Radio Pulsars
We report the discovery of two young isolated radio pulsars with very high
inferred magnetic fields. PSR J1119-6127 has period P = 0.407 s, and the
largest period derivative known among radio pulsars, Pdot = 4.0e-12. Under
standard assumptions these parameters imply a characteristic spin-down age of
only tau = 1.6 kyr and a surface dipole magnetic field strength of B = 4.1e13
G. We have measured a stationary period-second-derivative for this pulsar,
resulting in a braking index of n = 2.91+-0.05. We have also observed a glitch
in the rotation of the pulsar, with fractional period change Delta_P/P =
-4.4e-9. Archival radio imaging data suggest the presence of a previously
uncataloged supernova remnant centered on the pulsar. The second pulsar, PSR
J1814-1744, has P = 3.975 s and Pdot = 7.4e-13. These parameters imply tau = 85
kyr, and B = 5.5e13 G, the largest of any known radio pulsar.
Both PSR J1119-6127 and PSR J1814-1744 show apparently normal radio emission
in a regime of magnetic field strength where some models predict that no
emission should occur. Also, PSR J1814-1744 has spin parameters similar to the
anomalous X-ray pulsar (AXP) 1E 2259+586, but shows no discernible X-ray
emission. If AXPs are isolated, high magnetic field neutron stars
(``magnetars''), these results suggest that their unusual attributes are
unlikely to be merely a consequence of their very high inferred magnetic
fields.Comment: 7 pages, 3 embedded EPS figures, to be published in Ap
Formaldehyde over the central Pacific during PEM-Tropics B
Formaldehyde, CH2O, mixing ratios are reported for the central Pacific troposphere from a series of 41 flights, which took place in March-April 1999 as part of the NASA Pacific Exploratory Mission (PEM) -Tropics B mission. Ambient CH2O was collected in aqueous media and quantified using an enzyme-derivatization fluorescence technique. Primary calibration was performed using aqueous standards and known flow rates. Occasionally, CH2O gas standard additions to ambient air were performed as a secondary calibration. Analytical blanks were determined by replacing ambient air with pure air. The estimated precision was ±30 pptv and the estimated accuracy was the sum of ±30 parts per trillion by volume (pptv) ±15% of the measured value. Approximately 25% of the observations were less than the instrumental detection limit of 50 pptv, and 85% of these occurred above 6 km. CH2O mixing ratios decreased with altitude; for example, near the equator the median value in the lowest 2 km was 275 pptv, decreased to 150 pptv by 6 km and was below 100 pptv above 8 km. Between 130 and 170 W and below 1km, a small variation of CH2O mixing ratio with latitude was noted as near-surface median mixing ratios decreased near the equator (275 pptv) and were greater on either side (375 pptv). A marked decrease in near-surface CH2O (200 pptv) was noted south of 23° S on two flights. Between 3° and 23° S, median CH2O mixing ratios were lower in the eastern tropical Pacific than in the western or central Pacific; nominal differences were >100 pptv near the surface to âŒ100 pptv at midaltitude to âŒ50 pptv at high altitude. Off the coast of Central America and Mexico, mixing ratios as high as 1200 pptv were observed in plumes that originated to the east over land. CH2O observations were consistently higher than the results from a point model constrained by other photochemical species and meteorological parameters. Regardless of latitude or longitude, agreement was best at altitudes above 4 km where the difference between measured and modeled CH2O medians was less than 50 pptv. Below 2 km the model median was approximately 150 pptv less than the measured median. Copyright 2001 by the American Geophysical Union
A Comparison of Measured Crab and Vela Glitch Healing Parameters with Predictions of Neutron Star Models
There are currently two well-accepted models that explain how pulsars exhibit
glitches, sudden changes in their regular rotational spin-down. According to
the starquake model, the glitch healing parameter, Q, which is measurable in
some cases from pulsar timing, should be equal to the ratio of the moment of
inertia of the superfluid core of a neutron star (NS) to its total moment of
inertia. Measured values of the healing parameter from pulsar glitches can
therefore be used in combination with realistic NS structure models as one test
of the feasibility of the starquake model as a glitch mechanism. We have
constructed NS models using seven representative equations of state of
superdense matter to test whether starquakes can account for glitches observed
in the Crab and Vela pulsars, for which the most extensive and accurate glitch
data are available. We also present a compilation of all measured values of Q
for Crab and Vela glitches to date which have been separately published in the
literature. We have computed the fractional core moment of inertia for stellar
models covering a range of NS masses and find that for stable NSs in the
realistic mass range 1.4 +/- 0.2 solar masses, the fraction is greater than
0.55 in all cases. This range is not consistent with the observational
restriction Q < 0.2 for Vela if starquakes are the cause of its glitches. This
confirms results of previous studies of the Vela pulsar which have suggested
that starquakes are not a feasible mechanism for Vela glitches. The much larger
values of Q observed for Crab glitches (Q > 0.7) are consistent with the
starquake model predictions and support previous conclusions that starquakes
can be the cause of Crab glitches.Comment: 8 pages, including 3 figures and 1 table. Accepted for publication in
Ap
Mentalising and social problem solving in adults with Asperger's syndrome
It is well established that autistic spectrum disorder is linked to difficulties with mentalising, but the ways in which this affects everyday behaviour is less well understood. This study explored the nature and extent of difficulties in everyday social functioning in adults with Asperger's syndrome (AS), since increased understanding can enhance the development of more effective intervention strategies. Methods Individuals with AS (n=21) were compared with healthy control participants (n=21) on three tests of social cognition: the Mentalistic Interpretation task, which assesses interpretation of sarcasm and actions; the Social Problem Fluency task, which assesses ability to generate problem solutions; and the Social Problem Resolution task, which assesses judgement in selecting problem solutions. Results Comprehension of both sarcastic remarks and actions was impaired in those with AS on the mentalistic interpretation task. Participants with AS showed difficulties in identifying the awkward elements of everyday social scenarios, and they were also impaired in generating problem solutions but not in judging alternative solutions on the social problem fluency and resolution tasks. Conclusions These tasks potentially provide a means of profiling strengths and weaknesses in social processing, which in turn has implications for informing clinical evaluation and training. © 2013 Taylor & Francis
Relativistic semiclassical approach in strong-field nonlinear photoionization
Nonlinear relativistic ionization phenomena induced by a strong laser
radiation with elliptically polarization are considered. The starting point is
the classical relativistic action for a free electron moving in the
electromagnetic field created by a strong laser beam. The application of the
relativistic action to the classical barrier-suppression ionization is briefly
discussed. Further the relativistic version of the Landau-Dykhne formula is
employed to consider the semiclassical sub-barrier ionization. Simple
analytical expressions have been found for: (i) the rates of the strong-field
nonlinear ionization including relativistic initial and final state effects;
(ii) the most probable value of the components of the photoelectron final state
momentum; (iii) the most probable direction of photoelectron emission and (iv)
the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.
Nonlinear saturation of electrostatic waves: mobile ions modify trapping scaling
The amplitude equation for an unstable electrostatic wave in a multi-species
Vlasov plasma has been derived. The dynamics of the mode amplitude is
studied using an expansion in ; in particular, in the limit
, the singularities in the expansion coefficients are
analyzed to predict the asymptotic dependence of the electric field on the
linear growth rate . Generically , as
, but in the limit of infinite ion mass or for
instabilities in reflection-symmetric systems due to real eigenvalues the more
familiar trapping scaling is predicted.Comment: 13 pages (Latex/RevTex), 4 postscript encapsulated figures which are
included using the utility "uufiles". They should be automatically included
with the text when it is downloaded. Figures also available in hard copy from
the authors ([email protected]
Star Formation, Radio Sources, Cooling X-ray Gas, and Galaxy Interactions in the Brightest Cluster Galaxy in 2A0335+096
We present deep emission-line imaging taken with the SOAR Optical Imaging
Camera of the brightest cluster galaxy (BCG) in the nearby (z=0.035) X-ray
cluster 2A0335+096. We analyze long-slit optical spectroscopy, archival VLA,
Chandra X-ray, and XMM UV data. 2A0335+096 is a bright, cool-core X-ray
cluster, once known as a cooling flow. Within the highly disturbed core
revealed by Chandra X-ray observations, 2A0335+096 hosts a highly structured
optical emission-line system. The redshift of the companion is within 100 km/s
of the BCG and has certainly interacted with the BCG, and is likely bound to
it. The comparison of optical and radio images shows curved filaments in
H-alpha emission surrounding the resolved radio source. The velocity structure
of the emission-line bar between the BCG nucleus and the companion galaxy
provides strong evidence for an interaction between the two in the last ~50
Myrs. The age of the radio source is similar to the interaction time, so this
interaction may have provoked an episode of radio activity. We estimate a star
formation rate of >7 solar mass/yr based on the Halpha and archival UV data, a
rate similar to, but somewhat lower than, the revised X-ray cooling rate of
10-30 solar masses/year estimated from XMM spectra by Peterson & workers. The
Halpha nebula is limited to a region of high X-ray surface brightness and cool
X-ray temperature. The detailed structures of H-alpha and X-ray gas differ. The
peak of the X-ray emission is not the peak of H-alpha emission, nor does it lie
in the BCG. The estimated age of the radio lobes and their interaction with the
optical emission-line gas, the estimated timescale for depletion and
accumulation of cold gas, and the dynamical time in the system are all similar,
suggesting a common trigger mechanism.Comment: Accepted AJ, July 2007 publication. Vol 134, p. 14-2
Discovery of Five Binary Radio Pulsars
We report on five binary pulsars discovered in the Parkes multibeam Galactic
plane survey. All of the pulsars are old, with characteristic ages 1-11 Gyr,
and have relatively small inferred magnetic fields, 5-90e8 G. The orbital
periods range from 1.3 to 15 days. As a group these objects differ from the
usual low-mass binary pulsars (LMBPs): their spin periods of 9-88 ms are
relatively long; their companion masses, 0.2-1.1 Msun, are, in at least some
cases, suggestive of CO or more massive white dwarfs; and some of the orbital
eccentricities, 1e-5 < e < 0.002, are unexpectedly large. We argue that these
observed characteristics reflect binary evolution that is significantly
different from that of LMBPs. We also note that intermediate-mass binary
pulsars apparently have a smaller scale-height than LMBPs.Comment: 5 pages, 4 embedded EPS figs, accepted for publication by ApJ Letter
- âŠ