9 research outputs found

    Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM

    Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy

    No full text
    Aim: Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. Methods: We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mes-and results: enchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. controls. Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. Conclusions: Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies

    Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma

    Get PDF
    Background Glia-driven neuroinflammation promotes neuron injury in glaucoma that is a chronic neurodegenerative disease of the optic nerve and a leading cause of irreversible blindness. Although therapeutic modulation of neuroinflammation is increasingly viewed as a logical strategy to avoid inflammatory neurotoxicity in glaucoma, current understanding of the molecular regulation of neuroinflammation is incomplete, and the molecular targets for immunomodulation remains unknown. Growing datasets pointed to nuclear factor-kappaB (NF-κB), a key transcriptional activator of inflammation, which was identified to be most affected in glaucomatous astroglia. Using a cell type-specific experimental approach, this study aimed to determine the value of astroglial NF-κB as a potential treatment target for immunomodulation in experimental mouse glaucoma. Methods Neuroinflammatory and neurodegenerative outcomes of experimental glaucoma were comparatively analyzed in mice with or without cre/lox-based conditional deletion of astroglial IκKβ, which is the main activating kinase involved in IκB degradation through the canonical pathway of NF-κB activation. Glial responses and the inflammatory status of the retina and optic nerve were analyzed by cell morphology and cytokine profiling, and neuron structure and function were analyzed by counting retinal ganglion cell (RGC) axons and somas and recording pattern electroretinography (PERG) responses. Results Analysis of glial inflammatory responses showed immunomodulatory outcomes of the conditional transgenic deletion of IκKβ in astroglia. Various pro-inflammatory cytokines known to be transcriptional targets for NF-κB exhibited decreased production in IκKβ-deleted astroglia, which included TNF-α that can induce RGC apoptosis and axon degeneration during glaucomatous neurodegeneration. Indeed, transgenic modulation of inflammatory responses by astroglial IκKβ deletion reduced neurodegeneration at different neuronal compartments, including both RGC axons and somas, and protected PERG responses. Conclusions The findings of this study support a key role for astroglial NF-κB in neuroinflammatory and neurodegenerative outcomes of experimental glaucoma and the potential of this transcriptional regulator pathway as a glial treatment target to provide neuroprotection through immunomodulation. By pointing to a potential treatment strategy targeting the astroglia, these experimental findings are promising for future clinical translation through transgenic applications to improve the treatment of this blinding disease

    Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis

    No full text
    info:eu-repo/semantics/publishe
    corecore