299 research outputs found

    Stellar and gaseous abundances in M82

    Full text link
    The near infrared (IR) absorption spectra of starburst galaxies show several atomic and molecular lines from red supergiants which can be used to infer reliable stellar abundances. The metals locked in stars give a picture of the galaxy metallicity prior to the last burst of star formation. The enrichment of the new generation of stars born in the last burst can be traced by measuring the hot gas in the X-rays. For the first time detailed stellar abundances in the nuclear region of the starburst galaxy M82 have been obtained. They are compared with those of the hot gas as derived from an accurate re-analysis of the XMM and Chandra nuclear X-ray spectra. The cool stars and the hot gas suggest [Fe/H]=-0.35+/-0.2 dex, and an overall [Si,Mg/Fe] enhancement by 0.4 and 0.5 dex, respectively. This is consistent with a major chemical enrichment by SNe II explosions in recursive bursts on short timescales. Oxygen is more puzzling to interpret since it is enhanced by 0.3 dex in stars and depleted by 0.2 dex in the hot gas. None of the standard enrichment scenarios can fully explain such a behavior when compared with the other alpha-elements.Comment: APJ, in pres

    Detection of ionized gas in the globular cluster 47 Tucanae

    Get PDF
    We report the detection of ionized intracluster gas in the globular cluster 47 Tucanae. Pulsars in this cluster with a negative period derivative, which must lie in the distant half of the cluster, have significantly higher measured integrated electron column densities than the pulsars with a positive period derivative. We derive the plasma density within the central few pc of the cluster using two different methods which yield consistent values. Our best estimate of n_e = (0.067+-0.015)/cm^3 is about 100 times the free electron density of the ISM in the vicinity of 47 Tucanae, and the ionized gas is probably the dominant component of the intracluster medium.Comment: 5 pages, 3 included figures, accepted for publication by ApJ Letter

    The First Detailed Abundances for M giants in Baade's Window from Infrared Spectroscopy

    Full text link
    We report the first abundance analysis of 14 M giant stars in the Galactic bulge, based on R=25,000 infrared spectroscopy (1.5-1.8um) using NIRSPEC at the Keck II telescope. Because some of the bulge M giants reach high luminosities and have very late spectral type, it has been suggested that they are the progeny of only the most metal rich bulge stars, or possibly members of a younger bulge population. We find the iron abundance and composition of the M giants are similar to those of the K giants that have abundances determined from optical high resolution spectroscopy: =-0.190 +/- 0.020 with a 1-sigma dispersion of 0.08 +/- 0.015. Comparing our bulge M giants to a control sample of local disk M giants in the Solar vicinity, we find the bulge stars are enhanced in alpha elements at the level of +0.3 dex relative to the Solar composition stars, consistent with other studies of bulge globular clusters and field stars. This small sample shows no dependence of spectral type on metallicity, nor is there any indication that the M giants are the evolved members of a subset of the bulge population endowed with special characteristics such as relative youth or high metallicity. We also find low 12C/13C < 10, confirming the prsence of extra-mixing processes during the red gaint phase of evolutionComment: 19 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Visual cortex plasticity: A complex interplay of genetic and environmental influences

    Get PDF
    The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-depenDent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that unDerlie these plastic phenomena. Recent experimental eviDence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be consiDered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. © Copyright 2012 José Fernando Maya-Vetencourt and Nicola Origlia

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap

    High precision radial velocities with GIANO spectra

    Get PDF
    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 micron) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H -magnitudes: for H ~ 5 we obtain an rms scatter of ~ 10 m s-1, while for H ~ 9 the standard deviation increases to ~ 50 - 80 m s-1. The corresponding theoretical error expectations are ~4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.Comment: 26 pages, 15 figures, 6 table

    Abundances in bulge stars from high-resolution, near-IR spectra I. The CNO elements observed during the science verification of CRIRES at VLT

    Full text link
    The formation and evolution of the Milky Way bulge is not yet well understood and its classification is ambiguous. Constraints can, however, be obtained by studying the abundances of key elements in bulge stars. The aim of this study is to determine the chemical evolution of CNO, and a few other elements in stars in the Galactic bulge, and to discuss the sensitivities of the derived abundances from molecular lines. High-resolution, near-IR spectra in the H band were recorded using VLT/CRIRES. Due to the high and variable visual extinction in the line-of-sight towards the bulge, an analysis in the near-IR is preferred. The CNO abundances can all be determined simultaneously from the numerous molecular lines in the wavelength range observed. The three giant stars in Baade's window presented here are the first bulge stars observed with CRIRES. We have especially determined the CNO abundances, with uncertainties of less than 0.20 dex, from CO, CN, and OH lines. Since the systematic uncertainties in the derived CNO abundances due to uncertainties in the stellar fundamental parameters, notably Teff, are significant, a detailed discussion of the sensitivities of the derived abundances is included. We find good agreement between near-IR and optically determined O, Ti, Fe, and Si abundances. Two of our stars show a solar [C+N/Fe], suggesting that these giants have experienced the first dredge-up and that the oxygen abundance should reflect the original abundance of the giants. The two giants fit into the picture, in which there is no significant difference between the O abundance in bulge and thick-disk stars. Our determination of the S abundances is the first for bulge stars. The high [S/Fe] values for all the stars indicate a high star-formation rate in an early phase of the bulge evolution.Comment: Accepted by A&

    A New Approach to the Study of Stellar Populations in Early-Type Galaxies: K-band Spectral Indices and an Application to the Fornax Cluster

    Full text link
    New measurements of K-band spectral features are presented for eleven early-type galaxies in the nearby Fornax galaxy cluster. Based on these measurements, the following conclusions have been reached: (1) in galaxies with no signatures of a young stellar component, the K-band Na I index is highly correlated with both the optical metallicity indicator [MgFe]' and central velocity dispersion; (2) in the same galaxies, the K-band Fe features saturate in galaxies with sigma > 150 km/s while Na I (and [MgFe]') continues to increase; (3) [Si/Fe] (and possibly [Na/Fe]) is larger in all observed Fornax galaxies than in Galactic open clusters with near-solar metallicity; (4) in various near-IR diagnostic diagrams, galaxies with signatures of a young stellar component (strong Hbeta, weak [MgFe]') are clearly separated from galaxies with purely old stellar populations; furthermore, this separation is consistent with the presence of an increased number of M-giant stars (most likely to be thermally pulsating AGB stars); (5) the near-IR diagrams discussed here seem as efficient for detecting putatively young stellar components in early-type galaxies as the more commonly used age/metallicity diagnostic plots using optical indices (e.g Hbeta vs. [MgFe]').Comment: 47 pages, 16 figures, ApJ accepte
    corecore