3,815 research outputs found
The correlation between auditory speech sensitivity and speaker recognition ability
In various applications of forensic phonetics the question arises as to how far aural-perceptual speaker recognition performance is reliable. Therefore, it is necessary to examine the relationship between speaker recognition results and human perception/production abilities like musicality or speech sensitivity. In this study, performance in a speaker recognition experiment and a speech sensitivity test are correlated. The results show a moderately significant positive correlation between the two tasks. Generally, performance in the speaker recognition task was better than in the speech sensitivity test. Professionals in speech and singing yielded a more homogeneous correlation than non-experts. Training in speech as well as choir-singing seems to have a positive effect on performance in speaker recognition. It may be concluded, firstly, that in cases where the reliability of voice line-up results or the credibility of a testimony have to be considered, the speech sensitivity test could be a useful indicator. Secondly, the speech sensitivity test might be integrated into the canon of possible procedures for the accreditation of forensic phoneticians. Both tests may also be used in combination
Kondo-lattice model: Application to the temperature-dependent electronic structure of EuO(100) films
We present calculations for the temperature-dependent electronic structure
and magnetic properties of thin ferromagnetic EuO films. The treatment is based
on a combination of a multiband-Kondo lattice model with first-principles
TB-LMTO band structure calculations. The method avoids the problem of
double-counting of relevant interactions and takes into account the correct
symmetry of the atomic orbitals. We discuss the temperature-dependent
electronic structures of EuO(100) films in terms of quasiparticle densities of
states and quasiparticle band structures. The Curie temperature T_C of the EuO
films turns out to be strongly thickness-dependent, starting from a very low
value = 15K for the monolayer and reaching the bulk value at about 25 layers
Simple model for scanning tunneling spectroscopy of noble metal surfaces with adsorbed Kondo impurities
A simple model is introduced to describe conductance measurements between a
scanning tunneling microscope (STM) tip and a noble metal surface with adsorbed
transition metal atoms which display the Kondo effect. The model assumes a
realistic parameterization of the potential created by the surface and a
d3z2-r2 orbital for the description of the adsorbate. Fano lineshapes
associated with the Kondo resonance are found to be sensitive to details of the
adsorbate-substrate interaction. For instance, bringing the adsorbate closer to
the surface leads to more asymmetric lineshapes while their dependence on the
tip distance is weak. We find that it is important to use a realistic surface
potential, to properly include the tunnelling matrix elements to the tip and to
use substrate states which are orthogonal to the adsorbate and tip states. An
application of our model to Co adsorbed on Cu explains the difference in the
lineshapes observed between Cu(100) and Cu(111) surfaces.Comment: 11 pages, 8 eps figure
Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach
We consider the Hubbard model with a magnetic Anderson impurity coupled to a
lattice site. In the case of infinite dimensions, one-particle correlations of
the impurity electron are described by the effective Hamiltonian of the
two-impurity system. One of the impurities interacts with a bath of free
electrons and represents the Hubbard lattice, and the other is coupled to the
first impurity by the bare hybridization interaction. A study of the effective
two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of
a weak conduction-electron interaction (small U) reveals an enhancement of the
usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 -
3), treated by the variational principle, leads to the loss of the exponential
scale. The Kondo temperature T_K of the effective two-impurity system is
calculated as a function of the hybridization parameter and it is shown that
T_K decreases with an increase of U. The non-Fermi-liquid character of the
Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe
Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach
We study the low-temperature behavior of a magnetic impurity which is weakly
coupled to correlated conduction electrons. To account for conduction electron
interactions a diagrammatic approach in the frame of the 1/N expansion is
developed. The method allows us to study various consequences of the conduction
electron correlations for the ground state and the low-energy excitations. We
analyse the characteristic energy scale in the limit of weak conduction
electron interactions. Results are reported for static properties (impurity
valence, charge susceptibility, magnetic susceptibility, and specific heat) in
the low-temperature limit.Comment: 16 pages, 9 figure
Interaction between Kondo impurities in a quantum corral
We calculate the spectral densities for two impurities inside an elliptical
quantum corral using exact diagonalization in the relevant Hilbert subspace and
embedding into the rest of the system. For one impurity, the space and energy
dependence of the change in differential conductance observed
in the quantum mirage experiment is reproduced. In presence of another
impurity, is very sensitive to the hybridization between
impurity and bulk. The impurities are correlated ferromagnetically between
them. A hopping eV between impurities destroy the Kondo
resonance.Comment: 4 pages, 4 figure
Photon propagator, monopoles and the thermal phase transition in 3D compact QED
We investigate the gauge boson propagator in three dimensional compact
Abelian gauge model in the Landau gauge at finite temperature. The presence of
the monopole plasma in the confinement phase leads to appearance of an
anomalous dimension in the momentum dependence of the propagator. The anomalous
dimension as well as an appropriate ratio of photon wave function
renormalization constants with and without monopoles are observed to be order
parameters for the deconfinement phase transition. We discuss the relation
between our results and the confining properties of the gluon propagator in
non--Abelian gauge theories.Comment: 4 pages, 5 EPS figures, RevTeX 4, uses epsfig.sty; repaced to match
version accepted for publication in Phys. Rev. Lett. (discussion on fits is
extended
Spin-filter effect of the europium chalcogenides: An exactly solved many-body model
A model Hamiltonian is introduced which considers the main features of the
experimental spin filter situation as s-f interaction, planar geometry and the
strong external electric field. The proposed many-body model can be solved
analytically and exactly using Green functions.
The spin polarization of the field-emitted electrons is expressed in terms of
spin-flip probabilities, which on their part are put down to the exactly known
dynamic quantities of the system.
The calculated electron spin polarization shows remarkable dependencies on
the electron velocity perpendicular to the emitting plane and the strength of
s-f coupling. Experimentally observed polarization values of about 90% are well
understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures;
http://orion.physik.hu-berlin.de
One- and many-body effects on mirages in quantum corrals
Recent interesting experiments used scanning tunneling microscopy to study
systems involving Kondo impurities in quantum corrals assembled on Cu or noble
metal surfaces. The solution of the two-dimensional one-particle Schrodinger
equation in a hard wall corral without impurity is useful to predict the
conditions under which the Kondo effect can be projected to a remote location
(the quantum mirage). To model a soft circular corral, we solve this equation
under the potential W*delta(r-r0), where r is the distance to the center of the
corral and r0 its radius. We expand the Green's function of electron surface
states Gs0 for r<r0 as a discrete sum of contributions from single poles at
energies epsilon_i-I*delta_i. The imaginary part delta_i is the half-width of
the resonance produced by the soft confining potential, and turns out to be a
simple increasing function of epsilon_i. In presence of an impurity, we solve
the Anderson model at arbitrary temperatures using the resulting expression for
Gs0 and perturbation theory up to second order in the Coulomb repulsion U. We
calculate the resulting change in the differential conductance Delta dI/dV as a
function of voltage and space, in circular and elliptical corrals, for
different conditions, including those corresponding to recent experiments. The
main features are reproduced. The role of the direct hybridization between
impurity and bulk, the confinement potential, the size of the corral and
temperature on the intensity of the mirage are analyzed. We also calculate
spin-spin correlation functions.Comment: 13 pages, 12 figures, accepted for publication in Phys. Rev. B.
Calculations of spin correlations within an additional approximation adde
- …