3,464 research outputs found

    Critical behavior at Mott-Anderson transition: a TMT-DMFT perspective

    Full text link
    We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our findings are based on a combination of numerical and analytical results obtained within the framework of Typical-Medium Theory (TMT-DMFT) - the simplest extension of dynamical mean field theory (DMFT) capable of incorporating Anderson localization effects. By making use of previous scaling studies of Anderson impurity models close to the metal-insulator transition, we solve this problem analytically and reveal the dependence of the critical behavior on the particle-hole symmetry. Our main result is that, for sufficiently strong disorder, the Mott-Anderson transition is characterized by a precisely defined two-fluid behavior, in which only a fraction of the electrons undergo a "site selective" Mott localization; the rest become Anderson-localized quasiparticles.Comment: 4+ pages, 4 figures, v2: minor changes, accepted for publication in Phys. Rev. Let

    Perfil metabólico de cana-de-açúcar tratada com bioinoculante à base de substâncias húmicas e bactérias diazotróficas endofíticas.

    Get PDF
    Tese (Doutorado em Produção Vegetal) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campo dos Goytacazes. Orientador: Luciano Pasqualoto Canellas, Uenf; Co-orientador: Etelvino Henrique Novotny, CNPS

    Thermal connection and vibrational isolation: an elegant solution for two problems

    Get PDF
    Schenberg is a detector of gravitational waves resonant mass type, with a central frequency of operation of 3200 Hz. Transducers located on the surface of the resonating sphere, according to a distribution half-dodecahedron, are used to monitor a strain amplitude. To improve the performance of the detector it is essential to decrease the temperature, then it will be cooled down, this temperature could reach as low as 50 mK. This refrigerator produces vibration noise that could compromise the performance of Schenberg detector. In this work we the study such vibration noise and how it could be minimized proposing a new connection from the dilution refrigerator to the sphere suspension. The vibration attenuation is studied by finite element modeling (FEM) and an attenuation higher than 1024 is found, higher enough to note compromise the performance of Schenberg detector.Sao Paulo Federal Institute Rua Pedro Vicente 625, 01109-010 Sao Paulo, SP, BrazilFederal University of Sao Paulo, Department of Exact and Earth Sciences Rua Sao Nicolau 120, 09913-030 Diadema, SP, BrazilINPE Astrophysics Division, Sao Jose dos Campos, SP, 12227-010, BrazilFederal University of Sao Paulo, Department of Exact and Earth Sciences Rua Sao Nicolau 120, 09913-030 Diadema, SP, BrazilWeb of Scienc

    Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids.

    Get PDF
    Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the field to increase crop performance is challenging. The identification and characterization of metabolites that are induced by genomic changes may be used to improve plant responses to inoculation. The objective of this study was to describe changes in sugarcane metabolic profile that occur when HA and PGPB are used as biostimulants. Inoculum was applied to soil containing 45-day old sugarcane stalks. One week after inoculation, the methanolic extracts from leaves were obtained and analyzed by gas chromatography coupled to time-of-flight mass spectrometry; a total of 1,880 compounds were observed and 280 were identified in all samples. The application of HA significantly decreased the concentration of 15 metabolites, which generally included amino acids. HA increased the levels of 40 compounds, and these included metabolites linked to the stress response (shikimic, caffeic, hydroxycinnamic acids, putrescine, behenic acid, quinoline xylulose, galactose, lactose proline, oxyproline and valeric acid) and cellular growth (adenine and adenosine derivatives, ribose, ribonic acid and citric acid). Similarly, PGPB enhanced the level of metabolites identified in HA-treated soils; e.g., 48 metabolites were elevated and included amino acids, nucleic acids, organic acids, and lipids. Co-inoculation (HACPGPB) boosted the level of 110 metabolites with respect to non-inoculated controls; these included amino acids, lipids and nitrogenous compounds. Changes in the metabolic profile induced by HA+PGPB influenced both glucose and pentose pathways and resulted in the accumulation of heptuloses and riboses, which are substrates in the nucleoside biosynthesis and shikimic acid pathways. The mevalonate pathway was also activated, thus increasing phytosterol synthesis. The improvement in cellular metabolism observed with PGPB+HA was compatible with high levels of vitamins. Glucuronate and amino sugars were stimulated in addition to the products and intermediary compounds of tricarboxylic acid metabolism. Lipids and amino acids were the main compounds induced by co-inoculation in addition to antioxidants, stress-related metabolites, and compounds involved in cellular redox. The primary compounds observed in each treatment were identified, and the effect of co-inoculation (HACPGPB) on metabolite levels was discussed

    Dados climatológicos: estação de Paraipaba, 2003.

    Get PDF
    bitstream/CNPAT-2010/12035/1/Dc-084.pd
    corecore