5,651 research outputs found

    The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data

    Get PDF
    An inverse problem in static thermo-elasticity is investigated. The aim is to reconstruct the unspecified boundary data, as well as the temperature and displacement inside a body from over-specified boundary data measured on an accessible portion of its boundary. The problem is linear but ill-posed. The uniqueness of the solution is established but the continuous dependence on the input data is violated. In order to reconstruct a stable and accurate solution, the method of fundamental solutions is combined with Tikhonov regularization where the regularization parameter is selected based on the L-curve criterion. Numerical results are presented in both two and three dimensions showing the feasibility and ease of implementation of the proposed technique

    Antiproton Production in p+d Reaction at Subthreshold Energies

    Get PDF
    An enhancement of antiprotons produced in p+d reaction in comparison with ones in p+p elementary reaction is investigated. In the neighborhood of subthreshold energy the enhancement is caused by the difference of available energies for antiproton production. The cross section in p+d reaction, on the other hand, becomes just twice of the one in elementary p+p reaction at the incident energy far from the threshold energy when non-nucleonic components in deuteron target are not considered.Comment: LaTeX,7 pages with 5 eps figure

    Volume, Coulomb, and volume-symmetry coefficients of nucleus incompressibility in the relativistic mean field theory with the excluded volume effects

    Full text link
    The relation among the volume coefficient KK(=incompressibility of the nuclear matter), the Coulomb coefficient KcK_c, and the volume-symmetry coefficient KvsK_{vs} of the nucleus incompressibility are studied in the framework of the relativistic mean field theory with the excluded volume effects of the nucleons, under the assumption of the scaling model. It is found that K=300±50K= 300\pm 50MeV is necessary to account for the empirical values of KK, KcK_c, and KvsK_{vs}, simultaneously, as is in the case of the point-like nucleons. The result is independent on the detail descriptions of the potential of the σ\sigma-meson self-interaction and is almost independent on the excluded volume of the nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+

    Compressional properties of nuclear matter in the relativistic mean field theory with the excluded volume effects

    Get PDF
    Compressional properties of nuclear matter are studied by using the mean field theory with the excluded volume effects of the nucleons. It is found that the excluded volume effects make it possible to fit the empirical data of the Coulomb coefficient KcK_{c} of nucleus incompressibility, even if the volume coefficient KK is small(∼150\sim 150MeV). However, the symmetry properties favor K=300±50K=300\pm 50MeV as in the cases of the mean field theory of point-like nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+
    • …
    corecore