785 research outputs found

    Spectral width of F-region Syowa East SuperDARN echoes

    Get PDF
    第2回極域科学シンポジウム/第35回極域宙空圏シンポジウム 11月15日(火) 国立極地研究所 2階大会議

    Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data

    Get PDF
    Polar mesosphere summer echoes (PMSEs) have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N) and Syowa Station, Antarctica (69.0° S), are analyzed, together with simultaneous VHF and medium-frequency (MF) radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement. <br><br><b>Key words.</b> Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides

    Direct k-space mapping of the electronic structure in an oxide-oxide interface

    Full text link
    The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O-vacancies in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO3 is compensated by surface O-vacancies serving also as charge reservoir.Comment: 8 pages, 6 figures, incl. Supplemental Informatio

    Comparison of flow angle variations of E-region echo characteristics at VHF and HF

    Get PDF
    In this study, characteristics of the auroral E-region echoes at two significantly different radar frequencies of 12 and 50 MHz are compared. Considered observations were performed at the Syowa Antarctic station in March of 1997 using two HF and one VHF radars at various angles with respect to the magnetic L shells. The diurnal variation of echo occurrence was found to be similar at two frequencies and consistent with previous studies. On the other hand, variation of echo occurrence with L-shell angle φ was shown to be significantly different at two frequencies. 50-MHz echoes were detected preferentially along the L shell (dominating direction of the electrojet flow) while 12-MHz echoes were detected in a broad range of azimuths with the maximum in echo occurrence at φ=40-50°. By plotting the Doppler velocity versus L-shell angle, we demonstrate that 12-MHz echoes can be divided into two populations, the high- and low-velocity echoes. The high-velocity echoes were observed mostly along the L shells while the low-velocity echoes were observed at all directions. We also show that the echo populations exhibit different variation of the Doppler velocity with the L-shell angle. We argue that while the 50-MHz echoes are related to the Farley-Buneman and gradient drift plasma instabilities, the 12-MHz echoes can have additional sources, such as the thermo-diffusion instability and/or neutral wind-related plasma instabilities
    corecore