2,049 research outputs found

    Evaluating Terra MODIS Satellite Sensor Data Products for Maize Yield Estimation in South Africa

    Get PDF
    The Free State Province of the Republic of South Africa contains some of the most important maize-producing areas in South Africa. For this reason this province has also been selected as a Joint Experiment for Crop Assessment and Monitoring (JECAM, 2012) site representative of South Africa.The Terra (EOS AM-1) research satellite carries the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Two data products which are used in this research, created by the National Aeronautics and Space Administration (NASA) from the MODIS sensor, are the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).Objective yield points (OYP) are Global Positioning Points (GPS) that fieldworkers visit to record certain yield related data, including a final objective yield. Three research studies utilizing Terra MODIS data were performed. Study one utilised objective yields from the 2001/2002, 2004/2005 and 2005/2006 growth seasons for three provinces in South Africa. In study two, the 2006/2007 growth season OYP were extracted for the Free State province only. NDVI was downloaded from United States Geological Survey (USGS) for study one and two and extracted into a GIS for comparison with the OYP. For the Free State pilot study, study three, OYP from the 2001 to 2010 growth seasons were used. MODIS NDVI and EVI data were obtained from the Wide Area Monitoring Information System WAMIS portal for the data set of 35 points.Statistical analysis was done on the data of studies two and three. The 2006/2007 dataset yielded a R2 of 0.47 for all 225 points and 0.51 for the medium growth cultivar data only (186 data points), while the 2001 to 2010 growth season yielded an R2 of 0.63 for the medium yield group. Therefore it is concluded that Terra MODIS NDVI and EVI data can be utilized for maize yield estimation on points

    Assessing the Risk of Disc Heniation Related to Landing Impact Following Long-duration Spacecraft

    Get PDF
    Previous research has shown that crewmembers returning on the Space Shuttle have an increased incidence of herniated nucleus pulposus after spaceflight. This increased risk is thought to be related to disc volume expansion due to unloading and prolonged exposure to microgravity. Although there is an increased risk of disc herniation in Space Shuttle astronauts, it is unknown if dynamic landing loads further contribute to the risk of herniation. To determine if dynamic loads increase the risk of incidence, data from crewmembers (excluding cosmonauts) returning on the Soyuz spacecraft will be compared to Space Shuttle astronauts. These data will be obtained from the Lifetime Surveillance of Astronaut Health (LSAH) Project at NASA. Severity and incidence after spaceflight will be mined from the data, and statistical analyses will be used to determine if Soyuz crewmembers have a higher incidence of disc herniation than Space Shuttle crewmembers. The results are expected to show no difference between Space Shuttle and Soyuz crewmembers, indicating that higher dynamic loads on landing and long-duration spaceflight do not significantly increase the risk of disc herniation. If no difference is shown between the two crewmember populations, then disc volume expansion due to microgravity does not significantly increase the risk of injury due to dynamic loads for deconditioned crewmembers. Any risk associated with deconditioning would be primarily due to bone structure changes and resulting bone strength changes. This study is an important first step in determining whether the spinal disc plays a role in injury due to dynamic loads

    How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    Get PDF
    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, postmortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multipurpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A twoparameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head xacceleration peak response correlated with the human response at 8 and 10G 100 ms but not 10G 70 ms. The phase lagged the human response. Head zacceleration was not correlated. Chest xacceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head xdisplacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder xdisplacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head xacceleration was not well correlated. Head and chest zacceleration was in phase but had a higher peak response. Chest zacceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder zdisplacement but the THOR was in phase and was comparable to the mean peak response. Head xand zdisplacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NAS

    ISS Squat and Deadlift Kinematics on the Advanced Resistive Exercise Device

    Get PDF
    Visual assessment of exercise form on the Advanced Resistive Exercise Device (ARED) on orbit is difficult due to the motion of the entire device on its Vibration Isolation System (VIS). The VIS allows for two degrees of device translational motion, and one degree of rotational motion. In order to minimize the forces that the VIS must damp in these planes of motion, the floor of the ARED moves as well during exercise to reduce changes in the center of mass of the system. To help trainers and other exercise personnel better assess squat and deadlift form a tool was developed that removes the VIS motion and creates a stick figure video of the exerciser. Another goal of the study was to determine whether any useful kinematic information could be obtained from just a single camera. Finally, the use of these data may aid in the interpretation of QCT hip structure data in response to ARED exercises performed in-flight. After obtaining informed consent, four International Space Station (ISS) crewmembers participated in this investigation. Exercise was videotaped using a single camera positioned to view the side of the crewmember during exercise on the ARED. One crewmember wore reflective tape on the toe, heel, ankle, knee, hip, and shoulder joints. This technique was not available for the other three crewmembers, so joint locations were assessed and digitized frame-by-frame by lab personnel. A custom Matlab program was used to assign two-dimensional coordinates to the joint locations throughout exercise. A second custom Matlab program was used to scale the data, calculate joint angles, estimate the foot center of pressure (COP), approximate normal and shear loads, and to create the VIS motion-corrected stick figure videos. Kinematics for the squat and deadlift vary considerably for the four crewmembers in this investigation. Some have very shallow knee and hip angles, and others have quite large ranges of motion at these joints. Joint angle analysis showed that crewmembers do not return to a normal upright stance during squat, but remain somewhat bent at the hips. COP excursions were quite large during these exercises covering the entire length of the base of support in most cases. Anterior-posterior shear was very pronounced at the bottom of the squat and deadlift correlating with a COP shift to the toes at this part of the exercise. The stick figure videos showing a feet fixed reference frame have made it visually much easier for exercise personnel and trainers to assess exercise kinematics. Not returning to fully upright, hips extended position during squat exercises could have implications for the amount of load that is transmitted axially along the skeleton. The estimated shear loads observed in these crewmembers, along with a concomitant reduction in normal force, may also affect bone loading. The increased shear is likely due to the surprisingly large deviations in COP. Since the footplate on ARED moves along an arced path, much of the squat and deadlift movement is occurring on a tilted foot surface. This leads to COP movements away from the heel. The combination of observed kinematics and estimated kinetics make squat and deadlift exercises on the ARED distinctly different from their ground-based counterparts. CONCLUSION This investigation showed that some useful exercise information can be obtained at low cost, using a single video camera that is readily available on ISS. Squat and deadlift kinematics on the ISS ARED differ from ground-based ARED exercise. The amount of COP shift during these exercises sometimes approaches the limit of stability leading to modifications in the kinematics. The COP movement and altered kinematics likely reduce the bone loading experienced during these exercises. Further, the stick figure videos may prove to be a useful tool in assisting trainers to identify exercise form and make suggestions for improvement

    Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge

    Get PDF
    Artificial gravity (AG) has been proposed as a potential countermeasure to the debilitating physiological effects of long duration space flight. The most economical means of implementing AG may be through the use of a short-radius (2m or less) centrifuge. For such a device to produce gravitational forces comparable to those on earth requires rotation rates in excess of 20 revolutions per minute (rpm). Head turns made out of the plane of rotation at these rates, as may be necessary if exercise is combined with AG, result in cross-coupled stimuli (CCS) that cause adverse side effects including motion sickness, illusory sensations of motion, and inappropriate eye movements. Recent studies indicate that people can adapt to CCS and reduce these side effects by making multiple head turns during centrifuge sessions conducted over consecutive days. However, about 25% of the volunteers for these studies have difficulty tolerating the CCS adaptation paradigm and often drop out due to motion sickness symptoms. The goal of this investigation was to determine whether vivid motor imagery could be used as a pseudostimulus for adapting subjects to this unique environment. Twenty four healthy human subjects (14 males, 10 females), ranging in age from 21 to 48 years (mean 33, sd 7 years) took part in this study. The experimental stimuli were produced using the NASA JSC short-arm centrifuge (SAC). Subjects were oriented supinely on this device with the nose pointed toward the ceiling and head centered on the axis of rotation. Thus, centrifuge rotation was in the body roll plane. After ramp-up the SAC rotated clockwise at a constant rate of 23 rpm, producing a centrifugal force of approximately 1 g at the feet. Semicircular canal CCS were produced by having subjects make yaw head turns from the nose up (NU) position to the right ear down (RED) position and from RED to NU. Each head turn was completed in about one second, and a 30 second recovery period separated consecutive head movements. Participants were randomly assigned to one of three groups (n=8 per group): physical adapters (PA), mental adapters (MA), or a control group (CG). Each subject participated in a one hour test session on each of three consecutive days. Each test session consisted of an initial (preadaptation) period during which the subject performed six CCS maneuvers in the dark, followed by an adaptation period with internal lighting on the centrifuge, and a final (postadaptation) period during which six more CCS maneuvers were performed in the dark. For the PA group, the adaptation period consisted of performing 30 additional CCS maneuvers in the light. For the MA and CG group the centrifuge was ramped down to 0 rpm after the pre-adaptation period and ramped back up to 23 rpm before the post-adaptation period. For the both of these groups, the adaptation period consisted of making 30 CCS maneuvers in the light with the centrifuge stationary (so no cross-coupling occurred). MA group subjects were instructed to vividly imagine the provocative sensations produced by the preadaptation CCS maneuvers in terms of magnitude, duration, and direction of illusory body tilt, as well as any accompanying levels of motion sickness. CG group subjects were asked to answer low imagery content questions (trivial pursuit) during each adaptation period head turn. During the 30 second recovery following each head turn, psychophysical data were collected including self reports of motion sickness, magnitude and direction estimates of illusory body tilt, and the overall duration of these sensations. A multilevel mixed effects linear regression analysis performed on all response variables indicated that all three groups experienced some psychophysical adaptation across the three test sessions. For illusory tilt magnitude, the PA group exhibited the most overall adaptation, followed by the MA group, and the CG group. The slopes of these adaptation trajectories by group over day were significantly diffent from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation

    A Better ARED Squat

    Get PDF
    The 0-G ARED squat under loads the legs relative to the 1g ARED squat. In 1g the knee extensor/flexor muscles are primarily engaged due to the body's center of gravity is behind the knees during the motion of the squat. As body weight does not play a sufficient role 0 G, a crewmember's load exposure is limited by the load delivered by ARED through the exercise bar. Prescription loads for lowerbody resistance exercise in microgravity aim to include 1-G exercise bar load in addition to the crewmember's Earth body weight (BW); however, pressure points from the bar and the 1BW increased load at the shoulders translating to higher loads on the back have been a historical limitation for shoulders, requiring a decrease in exercise load at the start of the mission. Analogous to crewmembers, bed rest subjects report limitations of exercising with high loads on the back while performing squats on the horizontal exercise fixture (HEF), a custom exercise device that serves as an analog to 0-G ARED. Improvements for increasing loads on the HEF squat were suggested by distributing total exercise load between the hips and the bar1. The same is recommended for the 0-G ARED squat, with using current equipment on the ISS, which include the T2 running harness and T2 bungees. Quantification of this improvement has been accessed through computational modeling. The purpose of this study is to characterize joint torque during a squat with a distribution in exercise load on the ARED in 0 G. The analysis used existing models from NASA's Digital Astronaut Project. The biomechanics squat model was integrated with the ARED model and T2 bungees. The spring constant for the bungees were derived from ground testing. Forward dynamic simulation was performed for various conditions including anchor point attachments on the footplate of the ARED, bar load, hip load, and gravitational environment. The model confirms joint torques at knees is lower relative to 1G conditions primarily because the load delivery system is just with the exercise bar in 0 G. By distributing partial loads through use of the bungees to the hips joint-torque profiles were altered during a squat and provided options to enhance targeting lower-body loading in aims as for an improved countermeasure

    Data Mining of Historical Human Data to Assess the Risk of Injury due to Dynamic Loads

    Get PDF
    The NASA Occupant Protection Group is charged with ensuring crewmembers are protected during all dynamic phases of spaceflight. Previous work with outside experts has led to the development of a definition of acceptable risk (DAR) for space capsule vehicles. The DAR defines allowable probability rates for various categories of injuries. An important question is how to validate these probabilities for a given vehicle. One approach is to impact test human volunteers under projected nominal landing loads. The main drawback is the large number of subject tests required to attain a reasonable level of confidence that the injury probability rates would meet those outlined in the DAR. An alternative is to mine existing databases containing human responses to impact. Testing an anthropomorphic test device (ATD) at the same humanexposure levels could yield a range of ATD responses that would meet DAR. As one aspect of future vehicle validation, the ATD could be tested in the vehicle's seat and suit configuration at nominal landing loads and compared with the ATD responses supported by the human data set. This approach could reduce the number of humanvolunteer tests NASA would need to conduct to validate that a vehicle meets occupant protection standards. METHODS: The U.S. Air Force has recorded hundreds of human responses to frontal, lateral, and spinal impacts at many acceleration levels and pulse durations. All of this data are stored on the Collaborative Biomechanics Data Network (CBDN), which is maintained by the Wright Patterson Air Force Base (WPAFB). The test device for human occupant restraint (THOR) ATD was impact tested on WPAFB's horizontal impulse accelerator (HIA) matching humanvolunteer exposures on the HIA to 5 frontal and 3 spinal loading conditions. No human injuries occurred as a result of these impact conditions. Peak THOR response variables for neck axial tension and compression, and thoracicspine axial compression were collected. Maximal chest deflection was determined from motion capture video of the impact test. HIC 15 and BRIC were calculated from head acceleration responses. Given the number of human subjects for each test condition a confidence interval of injury probability will be obtained. RESULTS: Results will be discussed in terms of injuryrisk probability estimates based on the human data set evaluated. Also, gaps in the data set will be identified. These gaps could be one of two types. One is areas where additional THOR testing would increase the comparable human data set, thereby improving confidence in the injury probability rate. The other is where additional human testing would assist in obtaining information on other acceleration levels or directions. DISCUSSION: The historical human data showed validity of the THOR ATD for supplemental testing. The historical human data are limited in scope, however. Further data are needed to characterize the effects of sex, age, anthropometry, and deconditioning due to spaceflight on risk of injur

    UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase

    No full text
    The incidence of hypertension and cardiovascular disease correlates with latitude and rises in winter. The molecular basis for this remains obscure. As nitric oxide (NO) metabolites are abundant in human skin we hypothesised that exposure to UVA may mobilise NO bioactivity into the circulation to exert beneficial cardiovascular effects independently of vitamin D. In 24 healthy volunteers irradiation of the skin with 2 Standard Erythemal Doses of UVA lowered BP, with concomitant decreases in circulating nitrate and rises in nitrite concentrations. Unexpectedly, acute dietary intervention aimed at modulating systemic nitrate availability had no effect on UV-induced hemodynamic changes, indicating that cardiovascular effects were not mediated via direct utilization of circulating nitrate. UVA irradiation of the forearm caused increased blood flow independently of NO-synthase activity, suggesting involvement of pre-formed cutaneous NO stores. Confocal fluorescence microscopy studies of human skin pre-labelled with the NO-imaging probe DAF2-DA revealed that UVA-induced NO release occurs in a NOS-independent, dose-dependent fashion, with the majority of the light-sensitive NO pool in the upper epidermis. Collectively, our data provide mechanistic insights into an important function of the skin in modulating systemic NO bioavailability which may account for the latitudinal and seasonal variations of BP and cardiovascular disease.Journal of Investigative Dermatology accepted article preview online, 20 January 2014
    corecore