105 research outputs found
ΠΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΠΠΠ Π₯-ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ ΠΊΡΠΎΠ²Ρ
Topicality. Π‘lemastine fumarate (tavegil)-1-methyl-2 [2-Ξ±-methyl-p-chlorobenzhydryloxy)-ethyl]-pyrrolidine fumarate is the first generation H1-histamine receptor blocker. Π‘lemastine fumarate selectively inhibits histamine H1 receptors and reduces capillary permeability. The drug has a pronounced anti-allergic and antipruritic effect. Clemastine prevents the development of vasodilation and the smooth muscle contraction induced by histamine. Π‘lemastine fumarate has an isignificant anticholinergic activity, causes sedation. The drug is used to treat pruritus in psoriasis, multiple sclerosis and optic neuritis. Clemastine is characterized by the following side effects: increased fatigue, drowsiness, sedation, weakness, lethargy, impaired coordination of movements; nausea, vomiting, decreased blood pressure, palpitations, hemolytic anemia, skin rash, anaphylactic shock. In case of an overdose, the drug has a neurotoxic effect, which manifests itself in impaired consciousness with the development of generalized anticholinergic convulsive syndrome. The urgent task for monitoring the treatment effectiveness of the population with Ρlemastine fumarate and diagnosis of drug intoxication is the choice of highly sensitive and selective research methods of its analysis in pharmaceuticals and biological matrices during the treatment.
Aim. To develop an algorithm for directed analysis of clemastine in biological extracts from the blood using a unified method of the HPLC research.
Materials and methods. The extraction of clemastine was performed with chloroform at PhΒ 9.0. The extracts were purified from impurities by a combination of TLC and extraction with hexane. The TLC purification and identification of clemastine were carried out under optimal conditions: the system of organic solvents β methanol β 25Β % solution of ammonium hydroxide (100Β :Β 1.5) and chromatographic plates β Sorbfil PTLC-AF-A, Rf Ρlemastine = 0.60Β Β±Β 0.03. To detect clemastine, the most sensitive location reagents were used βUV light (λ =Β 254Β nm) and Dragendorffβs reagent modified by Mounier. The chromatographic analysis was performed on a βMilichrome A-02β microcolumn liquid chromatograph (EkoNova, Closed Joint-Stock Company, Russia) under standardized HPLC conditions: the reversed-phase variant using a metal column with a non-polar absorbent Prontosil 120-5CΒ 18Β AQ, 5Β ΞΌm; the mobile phase in the linear gradient mode β from eluent Π (5Β % acetonitrile and 95Β % buffer solution β 0.2Β Π solution of lithium perchlorate in 0.005Β Π solution of perchloric acid) to eluentΒ B (100Β % acetonitrile) for 40Β min. Regeneration of the column was conducted for 2Β min with the mixture of solvents; the flow rate of the mobile phase was 100Β ΞΌl/min, the injection volume β 4Β ΞΌl. The multichannel detection of the substance was performed using a two-beam multi-wave UV spectrophotometer at 8 wavelengths of 210, 220, 230, 240, 250, 260, 280, and 300Β nm; the optimal value of the column temperature β 37-40Β Β°Π‘ and the pump pressure β 2.8-3.2Β MPa.
Results and discussion. Isolation of clemastine from the blood was performed according to the method developed, including the extraction with chloroform at pH 9.0; the extraction purification of extracts with hexane from impurities; the TLC purification and identification of clemastine. Using the unified HPLC method clemastine was identified by retention parameters and spectral ratios. For the quantitative determination, a calibration graph or the straight line equation corresponding to this graph were used. The results obtained indicated the reliability and reproducibility of the method. It was found that the relative uncertainty of the average result in the analysis of clemastine in the blood was Ρ = ± 4.63 %, the relative standard deviation of the average result was RSDx = 1.67 %.
Conclusions. Clemastine was extracted with chloroform at pHΒ 9.0 from the blood. Purification of extracts from co-extractive compounds was performed by combining TLC and extraction with hexane. It has been found that when isolating Ρlemastine from the blood according to the methods developed it is possible to determine 36.05-39.55Β % of the substance (Ρ =Β Β±Β 4.63Β %, RSDxΒ =Β 1.67Β %). The method of TLC purification and identification of Ρlemastine in biogenic extracts was tested under the optimal conditions: the system of organic solvents β methanol β 25Β % solution of ammonium hydroxide (100Β :Β 1.5), the use of reagents β UVΒ light, Dragendorffβs reagent modified by Mounier, Rf Ρlemastine = 0.60Β Β±Β 0.03 (Sorbfil PTLC-AF-A). The unified HPLC method for identification and quantification of Ρlemastine was tested in biogenic extracts from the blood according to the algorithm of the directed analysis developed. It has been found that Ρlemastine can be identified by the retention time β 25.997-26.011Β min; the retention volume β 2599.7-2601.1Β ΞΌl; spectral ratios β 0.741; 0.536; 0.096; 0.023; 0.027; 0.005; 0.003. The Ρlemastine content was determined by the equation SΒ =Β 0.15Β Β·Β 10-3 Π‘Β +Β 0.14Β Β·Β 10-3; the correlation coefficient was equal to 0.9998. Chromatographic methods can be recommended for implementation in practice of the Bureau of Forensic Medical Examination, poison control centers, clinical laboratories regarding the study of medicinal substances in biological objects.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΡΡΠΌΠ°ΡΠ°Ρ (ΡΠ°Π²Π΅Π³ΠΈΠ») β 1-ΠΌΠ΅ΡΠΈΠ»-2 [2 Ξ±-ΠΌΠ΅ΡΠΈΠ»-ΠΏ-Ρ
Π»ΠΎΡΠ±Π΅Π½Π·Π³ΠΈΠ΄ΡΠΈΠ»ΠΎΠΊΡΠΈ) ΡΡΠΈΠ»] ΠΏΠΈΡΡΠΎΠ»ΠΈΠ΄ΠΈΠ½Π° ΡΡΠΌΠ°ΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π±Π»ΠΎΠΊΠ°ΡΠΎΡΠΎΠΌ H1-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΡ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΡΡΠΌΠ°ΡΠ°Ρ ΠΈΠ·Π±ΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΠ΅Ρ Π³ΠΈΡΡΠ°ΠΌΠΈΠ½ΠΎΠ²ΡΠ΅ Π1-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡ ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅Ρ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠΎΠ². ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ°Π»Π»Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ·ΡΠ΄Π½ΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠ°Π΅Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π³Π»Π°Π΄ΠΊΠΈΡ
ΠΌΡΡΡ, Π²ΡΠ·Π²Π°Π½Π½ΡΡ
Π³ΠΈΡΡΠ°ΠΌΠΈΠ½ΠΎΠΌ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΡΡΠΌΠ°ΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ Π°Π½ΡΠΈΡ
ΠΎΠ»ΠΈΠ½Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΠ΅Π΄Π°ΡΠΈΠ²Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ. ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ°Π·Π°, ΡΠ°ΡΡΠ΅ΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΊΠ»Π΅ΡΠΎΠ·Π° ΠΈ Π½Π΅Π²ΡΠΈΡΠ° Π·ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΠ²Π°. ΠΠ»Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ ΠΏΠΎΠ±ΠΎΡΠ½ΡΠ΅ ΡΡΡΠ΅ΠΊΡΡ: ΠΏΠΎΠ²ΡΡΠ΅Π½Π½Π°Ρ ΡΡΠΎΠΌΠ»ΡΠ΅ΠΌΠΎΡΡΡ, ΡΠΎΠ½Π»ΠΈΠ²ΠΎΡΡΡ, ΡΠ΅Π΄Π°ΡΠΈΠ²Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ, ΡΠ»Π°Π±ΠΎΡΡΡ, Π²ΡΠ»ΠΎΡΡΡ, Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ; ΡΠΎΡΠ½ΠΎΡΠ°, ΡΠ²ΠΎΡΠ°, ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ, ΡΠ΅ΡΠ΄ΡΠ΅Π±ΠΈΠ΅Π½ΠΈΠ΅, Π³Π΅ΠΌΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°Π½Π΅ΠΌΠΈΡ, ΠΊΠΎΠΆΠ½ΡΠ΅ Π²ΡΡΡΠΏΠ°Π½ΠΈΡ, Π°Π½Π°ΡΠΈΠ»Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠΊ. ΠΡΠΈ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ·ΠΈΡΠΎΠ²ΠΊΠ΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΉΡΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π² Π½Π°ΡΡΡΠ΅Π½ΠΈΠΈ ΡΠΎΠ·Π½Π°Π½ΠΈΡ Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ Π³Π΅Π½Π΅ΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΡ
ΠΎΠ»ΠΈΠ½Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΄ΠΎΡΠΎΠΆΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ°. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΡΡΠΌΠ°ΡΠ°ΡΠΎΠΌ ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΠΎΠΊΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠ±ΠΎΡ Π²ΡΡΠΎΠΊΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΈ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π² ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°Ρ
ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΡΠΈΡΠ°Ρ
Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π»Π΅ΡΠ΅Π½ΠΈΡ.
Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΊΡΡΡΠ°ΠΊΡΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ½ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΠΠΠ₯.
ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΊΡΡΡΠ°ΠΊΡΠΈΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ
Π»ΠΎΡΠΎΡΠΎΡΠΌΠΎΠΌ ΠΏΡΠΈ ΡΠΒ 9,0. ΠΠΊΡΡΡΠ°ΠΊΡΡ ΠΎΡΠΈΡΠ°Π»ΠΈ ΠΎΡ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π’Π‘Π₯ ΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ΅ΠΉ Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ. ΠΡΠΈΡΡΠΊΠ° Π’Π‘Π₯ ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡ Π² ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
: ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΌΠ΅ΡΠ°Π½ΠΎΠ» β 25Β % ΡΠ°ΡΡΠ²ΠΎΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄Π° Π°ΠΌΠΌΠΎΠ½ΠΈΡ (100Β :Β 1,5) ΠΈ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΊΠΈ Sorbfil PTLC-AF-A, Rf ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π°Β =Β 0,60Β Β±Β 0,03. ΠΠ»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ΅Π°Π³Π΅Π½ΡΡ β Π£Π€-ΡΠ²Π΅Ρ (λ =Β 254Β Π½ΠΌ) ΠΈ ΡΠ΅Π°Π³Π΅Π½Ρ ΠΡΠ°Π³Π΅Π½Π΄ΠΎΡΡΠ° Π² ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΡΠ½ΡΠ΅. Π₯ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΌΠΈΠΊΡΠΎΠΊΠΎΠ»ΠΎΠ½ΠΎΡΠ½ΠΎΠΌ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΌ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠ΅ Β«Milichrome A-02Β» (ΠΠΊΠΎΠΠΎΠ²Π°, ΠΠΠ, Π ΠΎΡΡΠΈΡ) Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ½ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΠΠΠ₯: Π²Π°ΡΠΈΠ°Π½Ρ Ρ ΠΎΠ±ΡΠ°ΡΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ Ρ Π½Π΅ΠΏΠΎΠ»ΡΡΠ½ΡΠΌ ΡΠΎΡΠ±Π΅Π½ΡΠΎΠΌ Prontosil 120-5CΒ 18Β AQ, 5Β ΠΌΠΊΠΌ; ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Π°Ρ ΡΠ°Π·Π° Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π³ΡΠ°Π΄ΠΈΠ΅Π½ΡΠ° β ΠΎΡ ΡΠ»ΡΠ΅Π½ΡΠ°Β Π (5Β % Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»Π° ΠΈ 95Β % Π±ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ° β 0,2Β Π ΡΠ°ΡΡΠ²ΠΎΡΠ° ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°ΡΠ° Π»ΠΈΡΠΈΡ Π² 0,005Β Π ΡΠ°ΡΡΠ²ΠΎΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ Ρ
Π»ΠΎΡΠ½ΠΎΠΉ) Π΄ΠΎ ΡΠ»ΡΠ΅Π½ΡΠ°Β Π (100Β % Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ») Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 40Β ΠΌΠΈΠ½. Π Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 2Β ΠΌΠΈΠ½ ΡΠΌΠ΅ΡΡΡ ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ; ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΡΠΎΠΊΠ° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ ΡΠ°Π·Ρ ΡΠΎΡΡΠ°Π²Π»ΡΠ»Π° 100Β ΠΌΠΊΠ»/ΠΌΠΈΠ½, ΠΎΠ±ΡΠ΅ΠΌ ΠΏΡΠΎΠ±Ρ β 4Β ΠΌΠΊΠ». ΠΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡΠ½ΠΎΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄Π²ΡΡ
Π»ΡΡΠ΅Π²ΠΎΠ³ΠΎ Π£Π€-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠ° ΠΏΡΠΈ 8Β Π΄Π»ΠΈΠ½Π°Ρ
Π²ΠΎΠ»Π½ 210, 220, 230, 240, 250, 260, 280 ΠΈ 300Β Π½ΠΌ; ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ β 37-40Β Β°Π‘ ; Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π°ΡΠΎΡΠ° β 2,8-3,2Β ΠΠΠ°.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΠΈΠ· ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅, Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΡ Ρ
Π»ΠΎΡΠΎΡΠΎΡΠΌΠΎΠΌ ΠΏΡΠΈ ΡΠΒ 9,0; ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΡΡ ΠΎΡΠΈΡΡΠΊΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΎΠ² Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ ΠΎΡ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ; TΠ‘Π₯-ΠΎΡΠΈΡΡΠΊΡ ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π°. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ½ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΠΠΠ₯ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π½ΠΈΡ ΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌ. ΠΠ»Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΊΠ°Π»ΠΈΠ±ΡΠΎΠ²ΠΎΡΠ½ΡΠΉ Π³ΡΠ°ΡΠΈΠΊ ΠΈΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΡΡΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΠΎΠ²Π°Π»ΠΈ ΠΎ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ ΠΈ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° Π² ΠΊΡΠΎΠ²ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ»Π° Ρ =Β Β±Β 4,63Β %, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° Π±ΡΠ»ΠΎ ΡΠ°Π²Π½ΡΠΌ RSDxΒ =Β 1,67Β %.
ΠΡΠ²ΠΎΠ΄Ρ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ ΡΠΊΡΡΡΠ°Π³ΠΈΡΠΎΠ²Π°Π»ΠΈ Ρ
Π»ΠΎΡΠΎΡΠΎΡΠΌΠΎΠΌ ΠΏΡΠΈ ΡΠΒ 9,0 ΠΈΠ· ΠΊΡΠΎΠ²ΠΈ. ΠΡΠΈΡΡΠΊΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΎΠ² ΠΎΡ ΡΠΎΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΈΡ
Π²Π΅ΡΠ΅ΡΡΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡΡΠ΅ΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π’Π‘Π₯ ΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΠΈΠ· ΠΊΡΠΎΠ²ΠΈ ΠΏΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ 36,05-39,55Β % Π²Π΅ΡΠ΅ΡΡΠ²Π° (Ρ =Β Β±Β 4,63Β %, RSDxΒ =Β 1,67Β %). ΠΠ΅ΡΠΎΠ΄ ΠΎΡΠΈΡΡΠΊΠΈ Π’Π‘Π₯ ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° Π² Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠΊΡΡΡΠ°ΠΊΡΠ°Ρ
Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½ Π² ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
: ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΌΠ΅ΡΠ°Π½ΠΎΠ» β 25Β % ΡΠ°ΡΡΠ²ΠΎΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄Π° Π°ΠΌΠΌΠΎΠ½ΠΈΡ (100Β :Β 1,5), ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π°Π³Π΅Π½ΡΠΎΠ² β Π£Π€-ΡΠ²Π΅ΡΠ° ΠΈ ΡΠ΅Π°Π³Π΅Π½ΡΠ° ΠΡΠ°Π³Π΅Π½Π΄ΠΎΡΡΠ° Π² ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΡΠ½ΡΠ΅, Rf ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π°Β =Β 0,60Β Β±Β 0,03 (Sorbfil PTLC-AF-A). Π£Π½ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΠΠΠ₯ Π΄Π»Ρ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° Π±ΡΠ» Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½ Π² Π±ΠΈΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠΊΡΡΡΠ°ΠΊΡΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π½ΠΈΡ 25,997-26,011Β ΠΌΠΈΠ½; ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π½ΠΈΡ 2599,7-2601,1Β ΠΌΠΊΠ»; ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΠΌ β 0,741; 0,536; 0,096; 0,023; 0,027; 0,005; 0,003. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ SΒ =Β 0,15Β Β·Β 10-3 Π‘Β +Β 0,14Β Β·Β 10-3, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΡΠ°Π²Π΅Π½ 0,9998. Π₯ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠ°ΠΊΡΠΈΠΊΡ Π±ΡΡΠΎ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Ρ, ΡΠ΅Π½ΡΡΠΎΠ² ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π·Π° ΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΉ ΠΏΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² Π½Π° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠ°Ρ
.ΠΠΊΡΡΠ°Π»ΡΠ½ΡΡΡΡ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΡΡΠΌΠ°ΡΠ°Ρ (ΡΠ°Π²Π΅Π³ΡΠ») β1-ΠΌΠ΅ΡΠΈΠ»-2 [2-Ξ±-ΠΌΠ΅ΡΠΈΠ»-ΠΏ-Ρ
Π»ΠΎΡΠ±Π΅Π½Π·Π³ΡΠ΄ΡΠΈΠ»ΠΎΠΊΡΡ) Π΅ΡΠΈΠ»] ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½Ρ ΡΡΠΌΠ°ΡΠ°Ρ Ρ Π±Π»ΠΎΠΊΠ°ΡΠΎΡΠΎΠΌ H1-Π³ΡΡΡΠ°ΠΌΡΠ½ΠΎΠ²ΠΈΡ
ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡΠ² ΠΏΠ΅ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠΊΠΎΠ»ΡΠ½Π½Ρ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΡΡΠΌΠ°ΡΠ°Ρ Π²ΠΈΠ±ΡΡΠΊΠΎΠ²ΠΎ ΡΠ½Π³ΡΠ±ΡΡ Π³ΡΡΡΠ°ΠΌΡΠ½ΠΎΠ²Ρ Π1-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΈ ΡΠ° Π·ΠΌΠ΅Π½ΡΡΡ ΠΏΡΠΎΠ½ΠΈΠΊΠ½ΡΡΡΡ ΠΊΠ°ΠΏΡΠ»ΡΡΡΠ². ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΌΠ°Ρ Π²ΠΈΡΠ°ΠΆΠ΅Π½Ρ ΠΏΡΠΎΡΠΈΠ°Π»Π΅ΡΠ³ΡΡΠ½Ρ ΡΠ° ΠΏΡΠΎΡΠΈΡΠ²Π΅ΡΠ±ΡΠΆΠ½Ρ Π΄ΡΡ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ Π·Π°ΠΏΠΎΠ±ΡΠ³Π°Ρ ΡΠΎΠ·Π²ΠΈΡΠΊΡ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°ΡΠ°ΡΡΡ ΡΠ° ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½Ρ Π³Π»Π°Π΄ΠΊΠΈΡ
ΠΌβΡΠ·ΡΠ², Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΈΡ
Π³ΡΡΡΠ°ΠΌΡΠ½ΠΎΠΌ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΡΡΠΌΠ°ΡΠ°Ρ ΠΌΠ°Ρ Π½Π΅Π·Π½Π°ΡΠ½Ρ Π°Π½ΡΠΈΡ
ΠΎΠ»ΡΠ½Π΅ΡΠ³ΡΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ, Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ ΡΠ΅Π΄Π°ΡΡΡ. ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ Π·Π°ΡΡΠΎΡΠΎΠ²ΡΡΡΡ Π΄Π»Ρ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ ΠΏΡΠΎΡΡΠ°Π·Ρ, ΡΠΎΠ·ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π΅ΡΠΎΠ·Ρ ΡΠ° Π½Π΅Π²ΡΠΈΡΡ Π·ΠΎΡΠΎΠ²ΠΎΠ³ΠΎ Π½Π΅ΡΠ²Π°. ΠΠ»Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ ΠΏΠΎΠ±ΡΡΠ½Ρ Π΅ΡΠ΅ΠΊΡΠΈ: ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π° ΡΡΠΎΠΌΠ»ΡΠ²Π°Π½ΡΡΡΡ, ΡΠΎΠ½Π»ΠΈΠ²ΡΡΡΡ, ΡΠ΅Π΄Π°ΡΠΈΠ²Π½ΠΈΠΉ Π΅ΡΠ΅ΠΊΡ, ΡΠ»Π°Π±ΠΊΡΡΡΡ, ΠΌΠ»ΡΠ²ΡΡΡΡ, ΠΏΠΎΡΡΡΠ΅Π½Π½Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡΡ ΡΡΡ
ΡΠ²; Π½ΡΠ΄ΠΎΡΠ°, Π±Π»ΡΠ²ΠΎΡΠ°, Π·Π½ΠΈΠΆΠ΅Π½Π½Ρ Π°ΡΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΊΡ, ΡΠ΅ΡΡΠ΅Π±ΠΈΡΡΡ, Π³Π΅ΠΌΠΎΠ»ΡΡΠΈΡΠ½Π° Π°Π½Π΅ΠΌΡΡ, ΡΠΊΡΡΠ½Ρ Π²ΠΈΡΠΈΠΏΠ°Π½Π½Ρ, Π°Π½Π°ΡΡΠ»Π°ΠΊΡΠΈΡΠ½ΠΈΠΉ ΡΠΎΠΊ. ΠΠ° ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ·ΡΠ²Π°Π½Π½Ρ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ ΡΠΈΠ½ΠΈΡΡ Π½Π΅ΠΉΡΠΎΡΠΎΠΊΡΠΈΡΠ½Ρ Π΄ΡΡ, ΡΠΎ ΠΏΡΠΎΡΠ²Π»ΡΡΡΡΡΡ ΠΏΠΎΡΡΡΠ΅Π½Π½ΡΠΌ ΡΠ²ΡΠ΄ΠΎΠΌΠΎΡΡΡ Π· ΡΠΎΠ·Π²ΠΈΡΠΊΠΎΠΌ Π³Π΅Π½Π΅ΡΠ°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π½ΡΠΈΡ
ΠΎΠ»ΡΠ½Π΅ΡΠ³ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΄ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½Π΄ΡΠΎΠΌΡ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΈΠΌ Π·Π°Π²Π΄Π°Π½Π½ΡΠΌ ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ Π½Π°ΡΠ΅Π»Π΅Π½Π½Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΡΡΠΌΠ°ΡΠ°ΡΠΎΠΌ Ρ Π΄ΡΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΠ½ΡΠΎΠΊΡΠΈΠΊΠ°ΡΡΡ Π»ΡΠΊΠ°ΠΌΠΈ Ρ Π²ΠΈΠ±ΡΡ Π²ΠΈΡΠΎΠΊΠΎΡΡΡΠ»ΠΈΠ²ΠΈΡ
Ρ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΡΠ² Π°Π½Π°Π»ΡΠ·Ρ ΠΉΠΎΠ³ΠΎ Ρ ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ½ΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°Ρ
Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
ΠΌΠ°ΡΡΠΈΡΡΡ
ΠΏΡΠ΄ ΡΠ°Ρ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ.
ΠΠ΅ΡΠΎΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Ρ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠ° Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π² Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π΅ΠΊΡΡΡΠ°ΠΊΡΠ°Ρ
ΠΊΡΠΎΠ²Ρ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΡΠ½ΡΡΡΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΠΠ Π₯.
ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠΊΡΡΡΠ°ΠΊΡΡΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ
Π»ΠΎΡΠΎΡΠΎΡΠΌΠΎΠΌ Π·Π° ΡΠΒ 9,0. ΠΠΊΡΡΡΠ°ΠΊΡΠΈ ΠΎΡΠΈΡΡΠ²Π°Π»ΠΈ Π²ΡΠ΄ Π΄ΠΎΠΌΡΡΠΎΠΊ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡΡ Π’Π¨Π₯ ΡΠ° Π΅ΠΊΡΡΡΠ°ΠΊΡΡΡΡ Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ. ΠΡΠΈΡΠ΅Π½Π½Ρ Π’Π¨Π₯ ΡΠ° ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠ°ΡΡΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΡ
ΡΠΌΠΎΠ²Π°Ρ
: ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΈΡ
ΡΠΎΠ·ΡΠΈΠ½Π½ΠΈΠΊΡΠ² ΠΌΠ΅ΡΠ°Π½ΠΎΠ» β 25Β % ΡΠΎΠ·ΡΠΈΠ½ Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠ΄Ρ Π°ΠΌΠΎΠ½ΡΡ (100Β :Β 1,5) ΡΠ° Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡΠ½Ρ ΠΏΠ»Π°ΡΡΠΈΠ½ΠΊΠΈ Sorbfil PTLC-AF-A, Rf ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ = 0,60Β Β±Β 0,03. ΠΠ»Ρ Π²ΠΈΡΠ²Π»Π΅Π½Π½Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΡΡΡΠ»ΠΈΠ²Ρ ΡΠ΅Π°Π³Π΅Π½ΡΠΈ β Π£Π€-ΡΠ²ΡΡΠ»ΠΎ (λ =Β 254Β Π½ΠΌ) ΡΠ° ΡΠ΅Π°Π³Π΅Π½Ρ ΠΡΠ°Π³Π΅Π½Π΄ΠΎΡΡΠ° Ρ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ ΠΡΠ½ΡΡ. Π₯ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡΠ½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΌΡΠΊΡΠΎΠΊΠΎΠ»ΠΎΠ½ΠΊΠΎΠ²ΠΎΠΌΡ ΡΡΠ΄ΠΈΠ½Π½ΠΎΠΌΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡ Β«Milichrome A-02Β» (ΠΠΊΠΎΠΠΎΠ²Π°, ΠΠΠ’, Π ΠΎΡΡΡ) ΡΠ· Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½ΡΠΌ ΡΠ½ΡΡΡΠΊΠΎΠ²Π°Π½ΠΈΡ
ΡΠΌΠΎΠ² ΠΠΠ Π₯: Π²Π°ΡΡΠ°Π½Ρ Π· ΠΎΠ±Π΅ΡΠ½Π΅Π½ΠΎΡ ΡΠ°Π·ΠΎΡ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΠΌΠ΅ΡΠ°Π»Π΅Π²ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ Π· Π½Π΅ΠΏΠΎΠ»ΡΡΠ½ΠΈΠΌ ΡΠΎΡΠ±Π΅Π½ΡΠΎΠΌ ProntosilΒ 120-5CΒ 18Β AQ, 5Β ΠΌΠΊΠΌ; ΡΡΡ
ΠΎΠΌΠ° ΡΠ°Π·Π° Π² ΡΠ΅ΠΆΠΈΠΌΡ Π»ΡΠ½ΡΠΉΠ½ΠΎΠ³ΠΎ Π³ΡΠ°Π΄ΡΡΠ½ΡΠ° β Π²ΡΠ΄ Π΅Π»ΡΠ΅Π½ΡΠ°Β Π (5Β % Π°ΡΠ΅ΡΠΎΠ½ΡΡΡΠΈΠ»Ρ ΡΠ° 95Β % Π±ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·ΡΠΈΠ½Ρ β 0,2Β Π ΡΠΎΠ·ΡΠΈΠ½Ρ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°ΡΡ Π»ΡΡΡΡ Π² 0,005Β Π ΡΠΎΠ·ΡΠΈΠ½Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ Ρ
Π»ΠΎΡΠ½ΠΎΡ) Π΄ΠΎ Π΅Π»ΡΠ΅Π½ΡΠ°Β Π (100Β % Π°ΡΠ΅ΡΠΎΠ½ΡΡΡΠΈΠ») ΠΏΡΠΎΡΡΠ³ΠΎΠΌ 40Β Ρ
Π². Π Π΅Π³Π΅Π½Π΅ΡΠ°ΡΡΡ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡΠΎΡΡΠ³ΠΎΠΌ 2Β Ρ
Π² ΡΡΠΌΡΡΡΡ ΡΠΎΠ·ΡΠΈΠ½Π½ΠΈΠΊΡΠ²; ΡΠ²ΠΈΠ΄ΠΊΡΡΡΡ ΠΏΠΎΡΠΎΠΊΡ ΡΡΡ
ΠΎΠΌΠΎΡ ΡΠ°Π·ΠΈ ΡΠΊΠ»Π°Π΄Π°Π»Π° 100Β ΠΌΠΊΠ»/Ρ
Π², ΠΎΠ±βΡΠΌ ΠΏΡΠΎΠ±ΠΈ β 4Β ΠΌΠΊΠ». ΠΠ°Π³Π°ΡΠΎΠΊΠ°Π½Π°Π»ΡΠ½Π΅ Π²ΠΈΡΠ²Π»Π΅Π½Π½Ρ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π΄Π²ΠΎΠΏΡΠΎΠΌΠ΅Π½Π΅Π²ΠΎΠ³ΠΎ Π±Π°Π³Π°ΡΠΎΡ
Π²ΠΈΠ»ΡΠΎΠ²ΠΎΠ³ΠΎ Π£Π€-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠ° Π·Π° 8 Π΄ΠΎΠ²ΠΆΠΈΠ½ Ρ
Π²ΠΈΠ»Ρ 210, 220, 230, 240, 250, 260, 280 Ρ 300Β Π½ΠΌ; ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Π΅ Π·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ β 37-40Β Β°Π‘; ΡΠΈΡΠΊ Π½Π°ΡΠΎΡΠ° β 2,8-3,2Β ΠΠΠ°.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠΈΠ΄ΡΠ»Π΅Π½Π½Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π· ΠΊΡΠΎΠ²Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π° ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΡ, ΡΠΊΠ° ΠΏΠ΅ΡΠ΅Π΄Π±Π°ΡΠ°Π»Π° Π΅ΠΊΡΡΡΠ°ΠΊΡΡΡ Ρ
Π»ΠΎΡΠΎΡΠΎΡΠΌΠΎΠΌ Π·Π° ΡΠΒ 9,0; Π΅ΠΊΡΡΡΠ°ΠΊΡΡΠΉΠ½Π΅ ΠΎΡΠΈΡΠ΅Π½Π½Ρ Π΅ΠΊΡΡΡΠ°ΠΊΡΡΠ² Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ Π²ΡΠ΄ Π΄ΠΎΠΌΡΡΠΎΠΊ; TΠ¨Π₯-ΠΎΡΠΈΡΠ΅Π½Π½Ρ ΡΠ° ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠ°ΡΡΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ. ΠΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΡΠ½ΡΡΡΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΠΠ Π₯ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΡΠ²Π°Π»ΠΈ Π·Π° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΡΡΠΈΠΌΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΈΠΌΠΈ ΡΠΏΡΠ²Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½ΡΠΌΠΈ. ΠΠ»Ρ ΠΊΡΠ»ΡΠΊΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ ΠΊΠ°Π»ΡΠ±ΡΡΠ²Π°Π»ΡΠ½ΠΈΠΉ Π³ΡΠ°ΡΡΠΊ Π°Π±ΠΎ ΡΡΠ²Π½ΡΠ½Π½Ρ ΠΏΡΡΠΌΠΎΡ Π»ΡΠ½ΡΡ, ΡΠΎ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Π»ΠΎ ΡΡΠΎΠΌΡ Π³ΡΠ°ΡΡΠΊΡ. ΠΡΡΠΈΠΌΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ²ΡΠ΄ΡΠΈΠ»ΠΈ ΠΏΡΠΎ Π½Π°Π΄ΡΠΉΠ½ΡΡΡΡ Ρ Π²ΡΠ΄ΡΠ²ΠΎΡΡΠ²Π°Π½ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠ»ΠΎ Π·βΡΡΠΎΠ²Π°Π½ΠΎ, ΡΠΎ Π²ΡΠ΄Π½ΠΎΡΠ½Π° Π½Π΅Π²ΠΈΠ·Π½Π°ΡΠ΅Π½ΡΡΡΡ ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠ΄ ΡΠ°Ρ Π°Π½Π°Π»ΡΠ·Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π² ΠΊΡΠΎΠ²Ρ ΡΡΠ°Π½ΠΎΠ²ΠΈΠ»Π° Ρ =Β Β±Β 4,63Β %, Π²ΡΠ΄Π½ΠΎΡΠ½Π΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½Π΅ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½Ρ ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄ΠΎΡΡΠ²Π½ΡΠ²Π°Π»ΠΎ RSDxΒ =Β 1,67Β %.
ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ Π΅ΠΊΡΡΡΠ°Π³ΡΠ²Π°Π»ΠΈ Ρ
Π»ΠΎΡΠΎΡΠΎΡΠΌΠΎΠΌ Π·Π° ΡΠΒ 9,0 Π· ΠΊΡΠΎΠ²Ρ. ΠΡΠΈΡΠ΅Π½Π½Ρ Π΅ΠΊΡΡΡΠ°ΠΊΡΡΠ² Π²ΡΠ΄ ΡΠΏΡΠ²Π΅ΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΠ»ΡΡ
ΠΎΠΌ ΠΊΠΎΠΌΠ±ΡΠ½ΡΠ²Π°Π½Π½Ρ Π’Π¨Π₯ ΡΠ° Π΅ΠΊΡΡΡΠ°ΠΊΡΡΡ Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ. ΠβΡΡΠΎΠ²Π°Π½ΠΎ, ΡΠΎ Π² ΡΠ°Π·Ρ Π²ΠΈΠ΄ΡΠ»Π΅Π½Π½Ρ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π· ΠΊΡΠΎΠ²Ρ Π·Π° ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΌΠΎΠΆΠ½Π° Π²ΠΈΠ·Π½Π°ΡΠΈΡΠΈ 36,05-39,55Β % ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ (Ρ =Β Β±Β 4,63Β %, RSDxΒ =Β 1,67Β %). ΠΠ΅ΡΠΎΠ΄ ΠΎΡΠΈΡΠ΅Π½Π½Ρ Π’Π¨Π₯ ΡΠ° ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠ°ΡΡΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π² Π±ΡΠΎΠ³Π΅Π½Π½ΠΈΡ
Π΅ΠΊΡΡΡΠ°ΠΊΡΠ°Ρ
Π°ΠΏΡΠΎΠ±ΠΎΠ²Π°Π½ΠΎ Π² ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΡ
ΡΠΌΠΎΠ²Π°Ρ
: ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡΠ³Π°Π½ΡΡΠ½ΠΈΡ
ΡΠΎΠ·ΡΠΈΠ½Π½ΠΈΠΊΡΠ² β ΠΌΠ΅ΡΠ°Π½ΠΎΠ» β 25Β % ΡΠΎΠ·ΡΠΈΠ½ Π°ΠΌΠΎΠ½ΡΡ Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠ΄Ρ (100Β :Β 1,5) Π·Π° Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΡΠ΅Π°Π³Π΅Π½ΡΡΠ² β Π£Π€-ΡΠ²ΡΡΠ»Π° ΡΠ° ΡΠ΅Π°Π³Π΅Π½ΡΠ° ΠΡΠ°Π³Π΅Π½Π΄ΠΎΡΡΠ° Ρ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ ΠΡΠ½ΡΡ, Rf ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ΡΒ =Β 0,60Β Β±Β 0,03 (Sorbfil PTLC-AF-A). Π£Π½ΡΡΡΠΊΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΠΠ Π₯ Π΄Π»Ρ ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠ°ΡΡΡ ΡΠ° ΠΊΡΠ»ΡΠΊΡΡΠ½ΠΎΡ ΠΎΡΡΠ½ΠΊΠΈ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ°ΡΡΠΎΠ²Π°Π½ΠΎ Π² Π±ΡΠΎΠ³Π΅Π½Π½ΠΈΡ
Π΅ΠΊΡΡΡΠ°ΠΊΡΠ°Ρ
ΠΊΡΠΎΠ²Ρ Π·Π³ΡΠ΄Π½ΠΎ Π· ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΈΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½ ΠΌΠΎΠΆΠ½Π° ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΡΠ²Π°ΡΠΈ Π·Π° ΡΠ°ΡΠΎΠΌ ΡΡΡΠΈΠΌΡΠ²Π°Π½Π½Ρ 25,997-26,011Β Ρ
Π²; ΠΎΠ±βΡΠΌΠΎΠΌ ΡΡΡΠΈΠΌΡΠ²Π°Π½Π½Ρ 2599,7-2601,1Β ΠΌΠΊΠ»; ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΈΠΌΠΈ ΡΠΏΡΠ²Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½ΡΠΌΠΈ β 0,741; 0,536; 0,096; 0,023; 0,027; 0,005; 0,003. ΠΠΌΡΡΡ ΠΊΠ»Π΅ΠΌΠ°ΡΡΠΈΠ½Ρ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π·Π° ΡΡΠ²Π½ΡΠ½Π½ΡΠΌ S = 0,15Β Β·Β 10-3 Π‘Β +Β 0,14Β Β·Β 10-3; ΠΊΠΎΠ΅ΡΡΡΡΡΠ½Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ Π΄ΠΎΡΡΠ²Π½ΡΠ²Π°Π² 0,9998. Π₯ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡΠ½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΠΌΠΎΠΆΠ½Π° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ²Π°ΡΠΈ Π΄Π»Ρ Π²ΠΏΡΠΎΠ²Π°Π΄ΠΆΠ΅Π½Π½Ρ Ρ ΠΏΡΠ°ΠΊΡΠΈΠΊΡ Π±ΡΡΠΎ ΡΡΠ΄ΠΎΠ²ΠΎ-ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΡ Π΅ΠΊΡΠΏΠ΅ΡΡΠΈΠ·ΠΈ, ΡΠ΅Π½ΡΡΡΠ² ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π·Π° ΠΎΡΡΡΡΠ½Π½ΡΠΌΠΈ, ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΡ
Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΡΠΉ ΡΠΎΠ΄ΠΎ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π»ΡΠΊΠ°ΡΡΡΠΊΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π½Π° Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
ΠΎΠ±βΡΠΊΡΠ°Ρ
Recommended from our members
Methodical Approach to Reducing Design Time by using Neural Networks in Early Stages of Concept Development
Modern companies often face various challenges in concept development of products or systems.
Design engineers prepare initial concepts as 3D models. These are then simulated by computational
engineers. If requirements are not met, this necessitates an iterative process that runs between the
design and computation departments until a valid concept is created. Design methods such as
topology optimization are often used here. The upcoming result is then attempted to be adapted to
certain manufacturing processes. These iteration loops can sometimes take a very long time, since
the model construction and structural optimization generate large computational efforts. The
present work shows on an example a methodical approach, which represents a first proof of
concept, to solving this problem, including a description of methods and techniques, as well as
possible problems in a detailed analysis concerning training data for neural networks and their
abstraction capabilities. It is evident that additional research work needs to be conducted for further
utilization in order to address all arising questions.Mechanical Engineerin
Copper valence, structural separation and lattice dynamics in tennantite (fahlore): NMR, NQR and SQUID studies
Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T1 -1 and nuclear spin-echo decay rate T2 -1 in tennantite samples in the temperature range 4.2-210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2-300 K shows a Curie-Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions. Β© Springer-Verlag 2007
Contribution of copper Nqr spectroscopy to the geological studies of complex sulfides and oxides
Many energy-related areas such as nuclear waste isolation, continental drilling, fossil fuel recovery, and geothermal energy are directly associated with an in-depth understanding of the earth sciences. Of particular interest is the development of analytical techniques which can augment existing ones in developing a better understanding of mineralogy. Presently, available instrumental techniques for studying mineralogical problems such as x-ray, electron and neutron diffraction, nuclear gamma resonance (NGR or MΓΆssbauer spectroscopy), electron microscopy and transmission electron microscopy have inherent limitations. These manifest themselves in being unable to characterize mineral samples fully, especially if they are polycrystalline. Nuclear Quadrupole Resonance (NQR) spectroscopy offers the potential for being able to obtain accurate high resolution spectra. These can then be interpreted to give structural information which can be related to local electronic structure, atomic arrangement, order/disorder phenomena, and crystal phase transformation. In addition, internal dynamics (ionic diffusion, metallic behavior, rotations, and so on) in the solid state can be studied. Furthermore, since NQR data are sensitive to changes in temperature and pressure, there is the possibility of obtaining stress/strain information. As applied to mineralogical and geological problems, NQR can also provide additional information, for example: chemical activity of minerals (genetic and technological aspects) at different hydrothermal conditions, the studies of impurity configurations in ore minerals and their distribution in crystal lattice, and other. This chapter highlights some NQR studies in copper sulfides, which demonstrate how NQR method can contribute to our understanding of geological problems. Examples are taken primarily from author's investigate groups. Β© 2009 Springer Science+Business Media B.V
Phase transition and anomalous electronic behavior in the layered superconductor CuS probed by NQR
Nuclear quadrupole resonance (NQR) on copper nuclei has been applied for studies of the electronic properties of quasi-two-dimensional (2D) low-temperature superconductor CuS (covellite) in the temperature range of 1.47-290 K. Two NQR signals corresponding to two structural nonequivalent sites of copper, Cu(1) and Cu(2), have been found. The temperature dependences of copper quadrupole frequencies, linewidths, and spin-lattice relaxation rates altogether demonstrate the structural phase transition near 55 K, which is accompanied by transformations of the electronic spectrum not typical for simple metals. The analysis of NQR results and their comparison with literature data show that the valence of copper ions at both sites is intermediate between monovalent and divalent states with the dominance of the former. It has been found that there is a strong hybridization of the Cu(1) and Cu(2) conduction bands at low temperatures, indicating that the charge delocalization between these ions takes place even in 2D regime. On the basis of our data, the occurrence of an energy gap, charge fluctuations, and charge-density waves, as well as the nature of the phase transition in CuS, are discussed. It is concluded that some physical properties of CuS are similar to those of high-temperature superconductors in the normal state. Β© 2009 The American Physical Society
Micron- to nano-scale intergrowths among members of the cuprobismutite series and paderaite: HRTEM and microanalytical evidence
Copyright Β© 2004 The Mineralogical SocietyCoherent intergrowths, at the lattice scale, between cuprobismutite (N = 2) and structurally related padraite along both major axes (15 Γ
and 17 Γ
repeats) of the two minerals are reported within skarn from Ocna de Fier, Romania. The structural subunit, DTD, 3 layers of padraite, is involved at interfaces of the two minerals along the 15 Γ
repeat, as well as in transposition of 1 padraite unit to 2 cuprobismutite units along the 17 Γ
repeat in slip defects. Lattice images obtained by HRTEM across intervals of 200 -400 nm show short- to long-range stacking sequences of cuprobismutite and padraite ribbons. Such nanoscale slabs mimic Β΅m-scale intergrowths observed in back-scattered electron images at three orders of magnitude greater. These slabs are compositionally equivalent to intermediaries in the cuprobismutite-padraite range encountered during microanalysis. Hodrushite (N = 1.5) is identified in the Β΅m-scale intergrowths, but its absence in the lattice images indicates that, in this case, formation of polysomes between structurally related phases is favoured instead of stacking disorder among cuprobismutite homologues. The tendency for short-range ordering and semi-periodic occurrence of polysomes suggests they are the result of an oscillatory chemical signal with periodicity varying from one to three repeats of 15 Γ
, rather than simple 'accidents' or irregular structural defects. Lead distribution along the polysomes is modelled as an output signal modulated by the periodicity of stacking sequences, with Pb carried within the D units of padraite. This type of modulator acts as a patterning operator activated by chemical waves with amplitudes that encompass the chemical difference between the minerals. Conversion of the padraite structural subunit DTD to the C unit of cuprobismutite, conserving interval width, emphasizes that polysomatic modularity also assists interference of chemical signals with opposite amplitudes. Observed coarsening of lattice-scale intergrowths up to the Β΅m-scale implies coupling between diffusion-controlled structural modulation, and rhythmic precipitation at the skarn front during crystallization.C.L. Ciobanu, A. Pring and N.J. Coo
Phase transition and anomalous electronic behavior in layered dichalcogenide CuS (covellite) probed by NQR
Nuclear quadrupole resonance (NQR) on copper nuclei has been applied for
studies of the electronic properties of quasi-two-dimensional low-temperature
superconductor CuS (covellite) in the temperature region between 1.47 and 290
K. Two NQR signals corresponding to two non-equivalent sites of copper in the
structure, Cu(1) and Cu(2), has been found. The temperature dependences of
copper quadrupole frequencies, line-widths and spin-lattice relaxation rates,
which so far had never been investigated so precisely for this material,
altogether demonstrate the structural phase transition near 55 K, which
accompanies transformations of electronic spectrum not typical for simple
metals. The analysis of NQR results and their comparison with literature data
show that the valence of copper ions at both sites is intermediate in character
between monovalent and divalent states with the dominant of the former. It has
been found that there is a strong hybridization of Cu(1) and Cu(2) conduction
bands at low temperatures, indicating that the charge delocalization between
these ions takes place even in 2D regime. Based on our data, the occurrence of
energy gap, charge fluctuations and charge-density waves, as well as the nature
of phase transition in CuS are discussed. It is concluded that some physical
properties of CuS are similar to those of high-temperature superconductors
(HTSC) in normal state.Comment: to be publishe
NQR/NMR and MΓΆssbauer spectroscopy of sulfides: Potential and versatility
Nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and nuclear gamma-resonance (NGR or MΓΆssbauer Effect) methods are generally described as highly sensitive tools in studies of local electronic structure and symmetry in solid-state materials. This is due to high informativity in electronic structure investigations, high resolution in phase-structural diagnostics (down to nano-scale), possibility to study polycrystalline and complex compounds, and to the non-destructive character of these methods. As applied to Earth sciences, both NQR/NMR and MΓΆssbauer spectroscopy methods contribute to mineralogical material science and mineral physics. Another important aspect is the fact that these methods, as demonstrated recently, belong to unique techniques suitable for on-line bulk mineralogical analysis. This includes remotely operated sensors used with conveyor systems in mining/materials handling and similar applications where real-time data collection/processing provides significant commercial benefits. These developments open new pathways for NQR/NMR and MΓΆssbauer spectroscopy applications. Notably, NQR/NMR and MΓΆssbauer effects are observed primarily on different nuclei-probes but provide similar information about the local properties of materials (hyperfine fields, electric field gradients and relaxation effects). This makes NQR/NMR and MΓΆssbauer methods mutually complementary despite their significant technical differences. This paper includes examples of recent applications of NQR, NMR and MΓΆssbauer spectroscopic tools to studies of copper-, antimony- and iron-containing sulfides, demonstrating how these methods can contribute to an improved understanding of geochemical problems. Β© 2013 E. Schweizerbart'sche Verlagsbuchhandlung, D-70176 Stuttgart
Π ΠΠΠ¬ ΠΠΠΠΠ RLM Π AVRLM Π Π ΠΠΠΠΠΠΠ¦ΠΠ Π‘ΠΠΠ¦ΠΠ€ΠΠ§ΠΠ‘ΠΠΠ Π£Π‘Π’ΠΠΠ§ΠΠΠΠ‘Π’Π Π Π€ΠΠΠΠΠ£ Π£ Π ΠΠΠ‘Π
As part of the study, DNA markers for local races L. maculans were identified and found that the AvrLm4-7 sequence in the selected fungus population is specifically recognized by the resistance Rlm4 and Rlm7 genes. The SCAR marker BN204 was identified, which allows us to identify homozygous and heterozygous plants carrying the Rlm4 gene. The work collection, including 22 varieties and 39 hybrids of rape, was analyzed using the DNA marker BN204. PCR results allowed us to establish that the number of individual plants with the resistance Rlm4 gene was higher than the number of stable forms characterized by the infection of leaf explants with pathogen races carrying the AvrLm4-7 sequence. It is supposed that these individual plants contain the Rlm4 gene, but they lack the Rlm7 gene.Π Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ²Π»Π΅Π½Ρ ΠΠΠ-ΠΌΠ°ΡΠΊΠ΅ΡΡ ΠΊ ΠΌΠ΅ΡΡΠ½ΡΠΌ ΡΠ°ΡΠ°ΠΌ L. maculans ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΎΡΠΎΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠΈΠ±Π° ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ AvrLm4-7, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎ ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π΅ΡΡΡ Π³Π΅Π½Π°ΠΌΠΈ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ Rlm4 ΠΈ Rlm7. ΠΡΡΠ²Π»Π΅Π½ SCAR-ΠΌΠ°ΡΠΊΠ΅Ρ BN204, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΉ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ Π³ΠΎΠΌΠΎΠ·ΠΈΠ³ΠΎΡΠ½ΡΠ΅ ΠΈ Π³Π΅ΡΠ΅ΡΠΎΠ·ΠΈΠ³ΠΎΡΠ½ΡΠ΅ ΡΠ°ΡΡΠ΅Π½ΠΈΡ, Π½Π΅ΡΡΡΠΈΠ΅ Π³Π΅Π½ Rlm4. Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΠΠ-ΠΌΠ°ΡΠΊΠ΅ΡΠ° BN204 Π±ΡΠ»Π° ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π° ΡΠ°Π±ΠΎΡΠ°Ρ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΡ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠ°Ρ 22 ΡΠΎΡΡΠ° ΠΈ 39 ΡΠΎΡΡΠΎΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ°ΠΏΡΠ°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΠ¦Π ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ, ΡΡΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ Ρ Π³Π΅Π½ΠΎΠΌ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ Rlm4 Π±ΡΠ»ΠΎ Π²ΡΡΠ΅, ΡΠ΅ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΡΠΎΠΉΡΠΈΠ²ΡΡ
ΡΠΎΡΠΌ, ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΡΠ΅ΠΌ Π·Π°ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π»ΠΈΡΡΠΎΠ²ΡΡ
ΡΠΊΡΠΏΠ»Π°Π½ΡΠΎΠ² ΡΠ°ΡΠ°ΠΌΠΈ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π°, Π½Π΅ΡΡΡΠΈΠΌΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ AvrLm4-7. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ Π΄Π°Π½Π½ΡΠ΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ°ΡΡΠ΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π³Π΅Π½ Rlm4, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ Π½ΠΈΡ
ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ Π³Π΅Π½ Rlm7.
Search for ultra-high energy photons through preshower effect with gamma-ray telescopes: Study of CTA-North efficiency
IndexaciΓ³n ScopusAs ultra-high energy photons (EeV and beyond) propagate from their sources of production to Earth, radiation-matter interactions can occur, leading to an effective screening of the incident flux. In this energy domain, photons can undergo e+/eβ pair production when interacting with the surrounding geomagnetic field, which in turn can produce a cascade of electromagnetic particles called preshower. Such cascade can initiate air showers in the Earth's atmosphere that gamma-ray telescopes, such as the next-generation gamma-ray observatory Cherenkov Telescope Array, can detect through Cherenkov emission. In this paper, we study the feasibility of detecting such phenomenon using Monte-Carlo simulations of nearly horizontal air showers for the example of the La Palma site of the Cherenkov Telescope Array. We investigate the efficiency of multivariate analysis in correctly identifying preshower events initiated by 40 EeV photons and cosmic ray dominated background simulated in the energy range 10 TeV β 10 EeV. The effective areas for such kind of events are also investigated and event rate predictions related to different ultra-high energy photons production models are presented. While the expected number of preshowers from diffuse emission of UHE photons for 30 hours of observation is estimated around 3.3Γ10β5 based on the upper limits put by the Pierre Auger Observatory, this value is at the level of 2.7Γ10β4 (5.7Γ10β5) when considering the upper limits of the Pierre Auger Observatory (Telescope Array) on UHE photon point sources. However, UHE photon emission may undergo possible βboostingβ due to gamma-ray burst, increasing the expected number of preshower events up to 0.17 and yielding a minimum required flux of ~ 0.2 kmβ2yrβ1 to obtain one preshower event, which is about a factor 10 higher than upper limits put by the Pierre Auger Observatory and Telescope Array (0.034 and 0.019 kmβ2yrβ1, respectively). Β© 2020https://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S092765052030061X?via%3Dihu
- β¦