105 research outputs found

    ВизначСння клСмастину Π’Π•Π Π₯-ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρƒ ΠΊΡ€ΠΎΠ²Ρ–

    Get PDF
    Topicality. Π‘lemastine fumarate (tavegil)-1-methyl-2 [2-Ξ±-methyl-p-chlorobenzhydryloxy)-ethyl]-pyrrolidine fumarate is the first generation H1-histamine receptor blocker. Π‘lemastine fumarate selectively inhibits histamine H1 receptors and reduces capillary permeability. The drug has a pronounced anti-allergic and antipruritic effect. Clemastine prevents the development of vasodilation and the smooth muscle contraction induced by histamine. Π‘lemastine fumarate has an isignificant anticholinergic activity, causes sedation. The drug is used to treat pruritus in psoriasis, multiple sclerosis and optic neuritis. Clemastine is characterized by the following side effects: increased fatigue, drowsiness, sedation, weakness, lethargy, impaired coordination of movements; nausea, vomiting, decreased blood pressure, palpitations, hemolytic anemia, skin rash, anaphylactic shock. In case of an overdose, the drug has a neurotoxic effect, which manifests itself in impaired consciousness with the development of generalized anticholinergic convulsive syndrome. The urgent task for monitoring the treatment effectiveness of the population with сlemastine fumarate and diagnosis of drug intoxication is the choice of highly sensitive and selective research methods of its analysis in pharmaceuticals and biological matrices during the treatment. Aim. To develop an algorithm for directed analysis of clemastine in biological extracts from the blood using a unified method of the HPLC research. Materials and methods. The extraction of clemastine was performed with chloroform at PhΒ 9.0. The extracts were purified from impurities by a combination of TLC and extraction with hexane. The TLC purification and identification of clemastine were carried out under optimal conditions: the system of organic solvents – methanol – 25Β % solution of ammonium hydroxide (100Β :Β 1.5) and chromatographic plates – Sorbfil PTLC-AF-A, Rf сlemastine = 0.60Β Β±Β 0.03. To detect clemastine, the most sensitive location reagents were used –UV light (λ  =Β 254Β nm) and Dragendorff’s reagent modified by Mounier. The chromatographic analysis was performed on a β€œMilichrome A-02” microcolumn liquid chromatograph (EkoNova, Closed Joint-Stock Company, Russia) under standardized HPLC conditions: the reversed-phase variant using a metal column with a non-polar absorbent Prontosil 120-5CΒ 18Β AQ, 5Β ΞΌm; the mobile phase in the linear gradient mode – from eluent А (5Β % acetonitrile and 95Β % buffer solution – 0.2 М solution of lithium perchlorate in 0.005 М solution of perchloric acid) to eluentΒ B (100Β % acetonitrile) for 40Β min. Regeneration of the column was conducted for 2Β min with the mixture of solvents; the flow rate of the mobile phase was 100Β ΞΌl/min, the injection volume – 4Β ΞΌl. The multichannel detection of the substance was performed using a two-beam multi-wave UV spectrophotometer at 8 wavelengths of 210, 220, 230, 240, 250, 260, 280, and 300Β nm; the optimal value of the column temperature – 37-40Β Β°Π‘ and the pump pressure – 2.8-3.2Β MPa. Results and discussion. Isolation of clemastine from the blood was performed according to the method developed, including the extraction with chloroform at pHΒ 9.0; the extraction purification of extracts with hexane from impurities; the TLC purification and identification of clemastine. Using the unified HPLC method clemastine was identified by retention parameters and spectral ratios. For the quantitative determination, a calibration graph or the straight line equation corresponding to this graph were used. The results obtained indicated the reliability and reproducibility of the method. It was found that the relative uncertainty of the average result in the analysis of clemastine in the blood was Ρ =Β Β±Β 4.63Β %, the relative standard deviation of the average result was RSDxΒ =Β 1.67Β %. Conclusions. Clemastine was extracted with chloroform at pHΒ 9.0 from the blood. Purification of extracts from co-extractive compounds was performed by combining TLC and extraction with hexane. It has been found that when isolating сlemastine from the blood according to the methods developed it is possible to determine 36.05-39.55Β % of the substance (Ρ =Β Β±Β 4.63Β %, RSDxΒ =Β 1.67Β %). The method of TLC purification and identification of сlemastine in biogenic extracts was tested under the optimal conditions: the system of organic solvents – methanol – 25Β % solution of ammonium hydroxide (100Β :Β 1.5), the use of reagents – UVΒ light, Dragendorff’s reagent modified by Mounier, Rf сlemastine = 0.60Β Β±Β 0.03 (Sorbfil PTLC-AF-A). The unified HPLC method for identification and quantification of сlemastine was tested in biogenic extracts from the blood according to the algorithm of the directed analysis developed. It has been found that сlemastine can be identified by the retention time – 25.997-26.011Β min; the retention volume – 2599.7-2601.1Β ΞΌl; spectral ratios – 0.741; 0.536; 0.096; 0.023; 0.027; 0.005; 0.003. The сlemastine content was determined by the equation SΒ =Β 0.15Β Β·Β 10-3 Π‘Β +Β 0.14Β Β·Β 10-3; the correlation coefficient was equal to 0.9998. Chromatographic methods can be recommended for implementation in practice of the Bureau of Forensic Medical Examination, poison control centers, clinical laboratories regarding the study of medicinal substances in biological objects.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½Π° Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ (Ρ‚Π°Π²Π΅Π³ΠΈΠ») – 1-ΠΌΠ΅Ρ‚ΠΈΠ»-2 [2 Ξ±-ΠΌΠ΅Ρ‚ΠΈΠ»-ΠΏ-хлорбСнзгидрилокси) этил] ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΈΠ½Π° Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ являСтся Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ H1-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ поколСния. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½Π° Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ гистаминовыС Н1-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒ капилляров. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ противоаллСргичСским ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ·ΡƒΠ΄Π½Ρ‹ΠΌ дСйствиСм. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ сокращСния Π³Π»Π°Π΄ΠΊΠΈΡ… ΠΌΡ‹ΡˆΡ†, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… гистамином. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½Π° Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π°Π½Ρ‚ΠΈΡ…ΠΎΠ»ΠΈΠ½Π΅Ρ€Π³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ сСдативный эффСкт. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ примСняСтся для лСчСния псориаза, рассСянного склСроза ΠΈ Π½Π΅Π²Ρ€ΠΈΡ‚Π° Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ€Π²Π°. Для клСмастина Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Π΅ эффСкты: ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Π°Ρ ΡƒΡ‚ΠΎΠΌΠ»ΡΠ΅ΠΌΠΎΡΡ‚ΡŒ, ΡΠΎΠ½Π»ΠΈΠ²ΠΎΡΡ‚ΡŒ, сСдативный эффСкт, ΡΠ»Π°Π±ΠΎΡΡ‚ΡŒ, Π²ΡΠ»ΠΎΡΡ‚ΡŒ, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ; Ρ‚ΠΎΡˆΠ½ΠΎΡ‚Π°, Ρ€Π²ΠΎΡ‚Π°, сниТСниС Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ давлСния, сСрдцСбиСниС, гСмолитичСская анСмия, ΠΊΠΎΠΆΠ½Ρ‹Π΅ высыпания, анафилактичСский шок. ΠŸΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π΄ΠΎΠ·ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ нСйротоксичСскоС дСйствиС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ проявляСтся Π² Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ сознания с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ антихолинСргичСского судороТного синдрома. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° эффСктивности лСчСния насСлСния клСмастина Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ΠΎΠΌ ΠΈ диагностики лСкарствСнной интоксикации являСтся Π²Ρ‹Π±ΠΎΡ€ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ сСлСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π² фармацСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… ΠΈ биологичСских ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°Ρ… Π²ΠΎ врСмя лСчСния. ЦСлью исслСдования являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° клСмастина Π² биологичСских экстрактах ΠΊΡ€ΠΎΠ²ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° исслСдования Π’Π­Π–Π₯. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π­ΠΊΡΡ‚Ρ€Π°ΠΊΡ†ΠΈΡŽ клСмастина ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΌ ΠΏΡ€ΠΈ рН 9,0. Экстракты ΠΎΡ‡ΠΈΡ‰Π°Π»ΠΈ ΠΎΡ‚ примСсСй ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ Π’Π‘Π₯ ΠΈ экстракциСй гСксаном. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Π’Π‘Π₯ ΠΈ идСнтификация клСмастина ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях: систСма органичСских растворитСлСй ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ» – 25Β % раствор гидроксида аммония (100Β :Β 1,5) ΠΈ хроматографичСскиС пластинки Sorbfil PTLC-AF-A, Rf клСмастина =Β 0,60Β Β±Β 0,03. Для обнаруТСния клСмастина использовали Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π°Π³Π΅Π½Ρ‚Ρ‹ – Π£Π€-свСт (λ =Β 254Β Π½ΠΌ) ΠΈ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ Π”Ρ€Π°Π³Π΅Π½Π΄ΠΎΡ€Ρ„Π° Π² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠœΡƒΠ½ΡŒΠ΅. Π₯роматографичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΌΠΈΠΊΡ€ΠΎΠΊΠΎΠ»ΠΎΠ½ΠΎΡ‡Π½ΠΎΠΌ Тидкостном Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π΅ Β«Milichrome A-02Β» (ЭкоНова, Π—ΠΠž, Россия) с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… условий Π’Π­Π–Π₯: Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ с ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½ΠΎΠΉ Ρ„Π°Π·ΠΎΠΉ с использованиСм мСталличСской ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ с нСполярным сорбСнтом Prontosil 120-5CΒ 18Β AQ, 5Β ΠΌΠΊΠΌ; подвиТная Ρ„Π°Π·Π° Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π° – ΠΎΡ‚ ΡΠ»ΡŽΠ΅Π½Ρ‚Π°Β Π (5Β % Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ 95Β % Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΠ³ΠΎ раствора – 0,2 М раствора ΠΏΠ΅Ρ€Ρ…Π»ΠΎΡ€Π°Ρ‚Π° лития Π² 0,005 М растворС кислоты Ρ…Π»ΠΎΡ€Π½ΠΎΠΉ) Π΄ΠΎ ΡΠ»ΡŽΠ΅Π½Ρ‚Π°Β Π’ (100Β % Π°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ») Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 40Β ΠΌΠΈΠ½. Π Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2Β ΠΌΠΈΠ½ смСсью растворитСлСй; ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ Ρ„Π°Π·Ρ‹ составляла 100Β ΠΌΠΊΠ»/ΠΌΠΈΠ½, объСм ΠΏΡ€ΠΎΠ±Ρ‹ – 4Β ΠΌΠΊΠ». МногоканальноС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ вСщСства ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π²ΡƒΡ…Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ Π£Π€-спСктрофотомСтра ΠΏΡ€ΠΈ 8Β Π΄Π»ΠΈΠ½Π°Ρ… Π²ΠΎΠ»Π½ 210, 220, 230, 240, 250, 260, 280 ΠΈ 300Β Π½ΠΌ; ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ – 37-40Β Β°Π‘ ; Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ насоса – 2,8-3,2 МПа. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ клСмастина ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΡΠΊΡΡ‚Ρ€Π°ΠΊΡ†ΠΈΡŽ Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΌ ΠΏΡ€ΠΈ рН 9,0; ΡΠΊΡΡ‚Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ очистку экстрактов гСксаном ΠΎΡ‚ примСсСй; TΠ‘Π₯-очистку ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ клСмастина. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π’Π­Π–Π₯ клСмастин ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ удСрТивания ΠΈ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌ. Для количСствСнного опрСдСлСния использовали ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠ»ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этому Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Π»ΠΈ ΠΎ надСТности ΠΈ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ срСднСго Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ клСмастина Π² ΠΊΡ€ΠΎΠ²ΠΈ составляла Ρ =Β Β±Β 4,63Β %, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ стандартноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ срСднСго Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π±Ρ‹Π»ΠΎ Ρ€Π°Π²Π½Ρ‹ΠΌ RSDxΒ =Β 1,67Β %. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½ экстрагировали Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΌ ΠΏΡ€ΠΈ рН 9,0 ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ. ΠžΡ‡ΠΈΡΡ‚ΠΊΡƒ экстрактов ΠΎΡ‚ соэкстрактивних вСщСств ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ комбинирования Π’Π‘Π₯ ΠΈ экстракции гСксаном. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠΈ клСмастина ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ 36,05-39,55Β % вСщСства (Ρ =Β Β±Β 4,63Β %, RSDxΒ =Β 1,67Β %). ΠœΠ΅Ρ‚ΠΎΠ΄ очистки Π’Π‘Π₯ ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ клСмастина Π² Π±ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… экстрактах Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½ Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях: систСма органичСских растворитСлСй ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ» – 25Β % раствор гидроксида аммония (100Β :Β 1,5), ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² – Π£Π€-свСта ΠΈ Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π° Π”Ρ€Π°Π³Π΅Π½Π΄ΠΎΡ€Ρ„Π° Π² ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠœΡƒΠ½ΡŒΠ΅, Rf клСмастина =Β 0,60Β Β±Β 0,03 (Sorbfil PTLC-AF-A). Π£Π½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π’Π­Π–Π₯ для ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ количСствСнной ΠΎΡ†Π΅Π½ΠΊΠΈ клСмастина Π±Ρ‹Π» Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½ Π² Π±ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… экстрактах ΠΊΡ€ΠΎΠ²ΠΈ согласно Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. УстановлСно, Ρ‡Ρ‚ΠΎ клСмастин ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ удСрТивания 25,997-26,011Β ΠΌΠΈΠ½; ΠΎΠ±ΡŠΠ΅ΠΌΡƒ удСрТивания 2599,7-2601,1Β ΠΌΠΊΠ»; ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌ – 0,741; 0,536; 0,096; 0,023; 0,027; 0,005; 0,003. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ клСмастина опрСдСляли ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ SΒ =Β 0,15Β Β·Β 10-3 Π‘Β +Β 0,14Β Β·Β 10-3, коэффициСнт коррСляции Ρ€Π°Π²Π΅Π½ 0,9998. Π₯роматографичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ для внСдрСния Π² ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ Π±ΡŽΡ€ΠΎ судСбно-мСдицинской экспСртизы, Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² контроля Π·Π° отравлСниями, клиничСских Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΉ ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ лСкарствСнных вСщСств Π½Π° биологичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ….ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½Ρƒ Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ (Ρ‚Π°Π²Π΅Π³Ρ–Π») –1-ΠΌΠ΅Ρ‚ΠΈΠ»-2 [2-Ξ±-ΠΌΠ΅Ρ‚ΠΈΠ»-ΠΏ-хлорбСнзгідрилоксі) Π΅Ρ‚ΠΈΠ»] ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΈΠ½Ρƒ Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ Ρ” Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ H1-гістамінових Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π² ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ покоління. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½Ρƒ Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ Π²ΠΈΠ±Ρ–Ρ€ΠΊΠΎΠ²ΠΎ Ρ–Π½Π³Ρ–Π±ΡƒΡ” гістамінові Н1-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΈ Ρ‚Π° Π·ΠΌΠ΅Π½ΡˆΡƒΡ” ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½Ρ–ΡΡ‚ΡŒ капілярів. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΌΠ°Ρ” Π²ΠΈΡ€Π°ΠΆΠ΅Π½Ρƒ ΠΏΡ€ΠΎΡ‚ΠΈΠ°Π»Π΅Ρ€Π³Ρ–Ρ‡Π½Ρƒ Ρ‚Π° протисвСрбіТну Π΄Ρ–ΡŽ. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½ Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°Ρ” Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ†Ρ–Ρ— Ρ‚Π° скорочСння Π³Π»Π°Π΄ΠΊΠΈΡ… м’язів, Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΈΡ… гістаміном. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½Ρƒ Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ ΠΌΠ°Ρ” Π½Π΅Π·Π½Π°Ρ‡Π½Ρƒ Π°Π½Ρ‚ΠΈΡ…ΠΎΠ»Ρ–Π½Π΅Ρ€Π³Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” ΡΠ΅Π΄Π°Ρ†Ρ–ΡŽ. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ Π·Π°ΡΡ‚ΠΎΡΠΎΠ²ΡƒΡŽΡ‚ΡŒ для лікування псоріазу, розсіяного склСрозу Ρ‚Π° Π½Π΅Π²Ρ€ΠΈΡ‚Ρƒ Π·ΠΎΡ€ΠΎΠ²ΠΎΠ³ΠΎ Π½Π΅Ρ€Π²Π°. Для клСмастину Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ– ΠΏΠΎΠ±Ρ–Ρ‡Π½Ρ– Π΅Ρ„Π΅ΠΊΡ‚ΠΈ: ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π° ΡΡ‚ΠΎΠΌΠ»ΡŽΠ²Π°Π½Ρ–ΡΡ‚ΡŒ, ΡΠΎΠ½Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ, сСдативний Π΅Ρ„Π΅ΠΊΡ‚, ΡΠ»Π°Π±ΠΊΡ–ΡΡ‚ΡŒ, ΠΌΠ»ΡΠ²Ρ–ΡΡ‚ΡŒ, ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†Ρ–Ρ— Ρ€ΡƒΡ…Ρ–Π²; Π½ΡƒΠ΄ΠΎΡ‚Π°, Π±Π»ΡŽΠ²ΠΎΡ‚Π°, зниТСння Π°Ρ€Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ тиску, сСрцСбиття, Π³Π΅ΠΌΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½Π° анСмія, ΡˆΠΊΡ–Ρ€Π½Ρ– висипання, Π°Π½Π°Ρ„Ρ–Π»Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΈΠΉ шок. Π—Π° пСрСдозування ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ Ρ‡ΠΈΠ½ΠΈΡ‚ΡŒ нСйротоксичну Π΄Ρ–ΡŽ, Ρ‰ΠΎ ΠΏΡ€ΠΎΡΠ²Π»ΡΡ”Ρ‚ΡŒΡΡ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½ΡΠΌ свідомості Π· Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΠΎΠΌ Π³Π΅Π½Π΅Ρ€Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΡ…ΠΎΠ»Ρ–Π½Π΅Ρ€Π³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ судомного синдрому. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΈΠΌ завданням ΠΌΠΎΠ½Ρ–Ρ‚ΠΎΡ€ΠΈΠ½Π³Ρƒ СфСктивності лікування насСлСння клСмастину Ρ„ΡƒΠΌΠ°Ρ€Π°Ρ‚ΠΎΠΌ Ρ– діагностики інтоксикації Π»Ρ–ΠΊΠ°ΠΌΠΈ Ρ” Π²ΠΈΠ±Ρ–Ρ€ високочутливих Ρ– сСлСктивних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Π°Π½Π°Π»Ρ–Π·Ρƒ ΠΉΠΎΠ³ΠΎ Ρƒ Ρ„Π°Ρ€ΠΌΠ°Ρ†Π΅Π²Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… Ρ– Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… матрицях ΠΏΡ–Π΄ час лікування. ΠœΠ΅Ρ‚ΠΎΡŽ дослідТСння Ρ” Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ спрямованого Π°Π½Π°Π»Ρ–Π·Ρƒ клСмастину Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Скстрактах ΠΊΡ€ΠΎΠ²Ρ– Π·Π° допомогою ΡƒΠ½Ρ–Ρ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ дослідТСння Π’Π•Π Π₯. ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π•ΠΊΡΡ‚Ρ€Π°ΠΊΡ†Ρ–ΡŽ клСмастину ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΌ Π·Π° рН 9,0. Екстракти ΠΎΡ‡ΠΈΡ‰ΡƒΠ²Π°Π»ΠΈ Π²Ρ–Π΄ Π΄ΠΎΠΌΡ–ΡˆΠΎΠΊ ΠΊΠΎΠΌΠ±Ρ–Π½Π°Ρ†Ρ–Ρ”ΡŽ Π’Π¨Π₯ Ρ‚Π° Π΅ΠΊΡΡ‚Ρ€Π°ΠΊΡ†Ρ–Ρ”ΡŽ гСксаном. ΠžΡ‡ΠΈΡ‰Π΅Π½Π½Ρ Π’Π¨Π₯ Ρ‚Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ клСмастину ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ…: систСма ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π² ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ» – 25Β % Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ гідроксиду Π°ΠΌΠΎΠ½Ρ–ΡŽ (100Β :Β 1,5) Ρ‚Π° Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½Ρ– пластинки Sorbfil PTLC-AF-A, Rf клСмастину = 0,60Β Β±Β 0,03. Для виявлСння клСмастину використовували Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ– Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΈ – Π£Π€-світло (λ =Β 254Β Π½ΠΌ) Ρ‚Π° Ρ€Π΅Π°Π³Π΅Π½Ρ‚ Π”Ρ€Π°Π³Π΅Π½Π΄ΠΎΡ€Ρ„Π° Ρƒ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠœΡƒΠ½ΡŒΡ”. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΌΡ–ΠΊΡ€ΠΎΠΊΠΎΠ»ΠΎΠ½ΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Ρ–Π΄ΠΈΠ½Π½ΠΎΠΌΡƒ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ– Β«Milichrome A-02Β» (ЕкоНова, ЗАВ, Росія) Ρ–Π· застосуванням ΡƒΠ½Ρ–Ρ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… ΡƒΠΌΠΎΠ² Π’Π•Π Π₯: Π²Π°Ρ€Ρ–Π°Π½Ρ‚ Π· ΠΎΠ±Π΅Ρ€Π½Π΅Π½ΠΎΡŽ Ρ„Π°Π·ΠΎΡŽ Π· використанням ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΎΡ— ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ Π· нСполярним сорбСнтом ProntosilΒ 120-5CΒ 18Β AQ, 5Β ΠΌΠΊΠΌ; Ρ€ΡƒΡ…ΠΎΠΌΠ° Ρ„Π°Π·Π° Π² Ρ€Π΅ΠΆΠΈΠΌΡ– Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Π΄Ρ–Ρ”Π½Ρ‚Π° – Π²Ρ–Π΄ Π΅Π»ΡŽΠ΅Π½Ρ‚Π°Β Π (5Β % Π°Ρ†Π΅Ρ‚ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ Ρ‚Π° 95Β % Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ – 0,2 М Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ ΠΏΠ΅Ρ€Ρ…Π»ΠΎΡ€Π°Ρ‚Ρƒ Π»Ρ–Ρ‚Ρ–ΡŽ Π² 0,005 М Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ– кислоти Ρ…Π»ΠΎΡ€Π½ΠΎΡ—) Π΄ΠΎ Π΅Π»ΡŽΠ΅Π½Ρ‚Π°Β Π’ (100Β % Π°Ρ†Π΅Ρ‚ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ») протягом 40Β Ρ…Π². Π Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†Ρ–ΡŽ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ протягом 2Β Ρ…Π² ΡΡƒΠΌΡ–ΡˆΡˆΡŽ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π²; ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΡƒ Ρ€ΡƒΡ…ΠΎΠΌΠΎΡ— Ρ„Π°Π·ΠΈ складала 100Β ΠΌΠΊΠ»/Ρ…Π², об’єм ΠΏΡ€ΠΎΠ±ΠΈ – 4Β ΠΌΠΊΠ». Π‘Π°Π³Π°Ρ‚ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Π΅ виявлСння Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π° допомогою Π΄Π²ΠΎΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΠ³ΠΎ Π±Π°Π³Π°Ρ‚ΠΎΡ…Π²ΠΈΠ»ΡŒΠΎΠ²ΠΎΠ³ΠΎ Π£Π€-спСктрофотомСтра Π·Π° 8 Π΄ΠΎΠ²ΠΆΠΈΠ½ Ρ…Π²ΠΈΠ»ΡŒ 210, 220, 230, 240, 250, 260, 280 Ρ– 300Β Π½ΠΌ; ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π΅ значСння Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ – 37-40Β Β°Π‘; тиск насоса – 2,8-3,2 МПа. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. ВиділСння клСмастину Π· ΠΊΡ€ΠΎΠ²Ρ– ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ, яка ΠΏΠ΅Ρ€Π΅Π΄Π±Π°Ρ‡Π°Π»Π° Π΅ΠΊΡΡ‚Ρ€Π°ΠΊΡ†Ρ–ΡŽ Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΌ Π·Π° рН 9,0; СкстракційнС очищСння Скстрактів гСксаном Π²Ρ–Π΄ Π΄ΠΎΠΌΡ–ΡˆΠΎΠΊ; TΠ¨Π₯-очищСння Ρ‚Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ клСмастину. Π—Π° допомогою ΡƒΠ½Ρ–Ρ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π’Π•Π Π₯ клСмастин Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Π»ΠΈ Π·Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ утримування Ρ‚Π° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΌΠΈ ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌΠΈ. Для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння використовували ΠΊΠ°Π»Ρ–Π±Ρ€ΡƒΠ²Π°Π»ΡŒΠ½ΠΈΠΉ Π³Ρ€Π°Ρ„Ρ–ΠΊ Π°Π±ΠΎ рівняння прямої Π»Ρ–Π½Ρ–Ρ—, Ρ‰ΠΎ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Π»ΠΎ Ρ†ΡŒΠΎΠΌΡƒ Π³Ρ€Π°Ρ„Ρ–ΠΊΡƒ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ свідчили ΠΏΡ€ΠΎ Π½Π°Π΄Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŒ Ρ– Π²Ρ–Π΄Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Π½Ρ–ΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ. Π‘ΡƒΠ»ΠΎ з’ясовано, Ρ‰ΠΎ відносна Π½Π΅Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ–ΡΡ‚ΡŒ ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ ΠΏΡ–Π΄ час Π°Π½Π°Π»Ρ–Π·Ρƒ клСмастину Π² ΠΊΡ€ΠΎΠ²Ρ– становила Ρ =Β Β±Β 4,63Β %, відноснС стандартнС відхилСння ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ Π΄ΠΎΡ€Ρ–Π²Π½ΡŽΠ²Π°Π»ΠΎ RSDxΒ =Β 1,67Β %. Висновки. ΠšΠ»Π΅ΠΌΠ°ΡΡ‚ΠΈΠ½ Скстрагували Ρ…Π»ΠΎΡ€ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΌ Π·Π° рН 9,0 Π· ΠΊΡ€ΠΎΠ²Ρ–. ΠžΡ‡ΠΈΡ‰Π΅Π½Π½Ρ Скстрактів Π²Ρ–Π΄ співСкстрактивних сполук ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡˆΠ»ΡΡ…ΠΎΠΌ комбінування Π’Π¨Π₯ Ρ‚Π° Скстракції гСксаном. З’ясовано, Ρ‰ΠΎ Π² Ρ€Π°Π·Ρ– виділСння клСмастину Π· ΠΊΡ€ΠΎΠ²Ρ– Π·Π° Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΌΠΎΠΆΠ½Π° Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ 36,05-39,55Β % Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ (Ρ =Β Β±Β 4,63Β %, RSDxΒ =Β 1,67Β %). ΠœΠ΅Ρ‚ΠΎΠ΄ очищСння Π’Π¨Π₯ Ρ‚Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— клСмастину Π² Π±Ρ–ΠΎΠ³Π΅Π½Π½ΠΈΡ… Скстрактах Π°ΠΏΡ€ΠΎΠ±ΠΎΠ²Π°Π½ΠΎ Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ…: систСма ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π² – ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ» – 25Β % Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ Π°ΠΌΠΎΠ½Ρ–ΡŽ гідроксиду (100Β :Β 1,5) Π·Π° застосування Ρ€Π΅Π°Π³Π΅Π½Ρ‚Ρ–Π² – Π£Π€-світла Ρ‚Π° Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π° Π”Ρ€Π°Π³Π΅Π½Π΄ΠΎΡ€Ρ„Π° Ρƒ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠœΡƒΠ½ΡŒΡ”, Rf клСмастину =Β 0,60Β Β±Β 0,03 (Sorbfil PTLC-AF-A). Π£Π½Ρ–Ρ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π’Π•Π Π₯ для Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Ρ‚Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΡ— ΠΎΡ†Ρ–Π½ΠΊΠΈ клСмастину Π±ΡƒΠ»ΠΎ ΠΎΠΏΡ€Π°Ρ†ΡŒΠΎΠ²Π°Π½ΠΎ Π² Π±Ρ–ΠΎΠ³Π΅Π½Π½ΠΈΡ… Скстрактах ΠΊΡ€ΠΎΠ²Ρ– Π·Π³Ρ–Π΄Π½ΠΎ Π· Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ спрямованого Π°Π½Π°Π»Ρ–Π·Ρƒ. ВиявлСно, Ρ‰ΠΎ клСмастин ΠΌΠΎΠΆΠ½Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Ρ‚ΠΈ Π·Π° часом утримування 25,997-26,011Β Ρ…Π²; об’ємом утримування 2599,7-2601,1Β ΠΌΠΊΠ»; ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΌΠΈ ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌΠΈ – 0,741; 0,536; 0,096; 0,023; 0,027; 0,005; 0,003. Вміст клСмастину Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π·Π° рівнянням S = 0,15Β Β·Β 10-3 Π‘Β +Β 0,14Β Β·Β 10-3; ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ корСляції Π΄ΠΎΡ€Ρ–Π²Π½ΡŽΠ²Π°Π² 0,9998. Π₯Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ ΠΌΠΎΠΆΠ½Π° Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ²Π°Ρ‚ΠΈ для впровадТСння Ρƒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ Π±ΡŽΡ€ΠΎ судово-ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΡ— СкспСртизи, Ρ†Π΅Π½Ρ‚Ρ€Ρ–Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ Π·Π° отруєннями, ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΡ… Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Ρ–ΠΉ Ρ‰ΠΎΠ΄ΠΎ вивчСння Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Π½Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… об’єктах

    Copper valence, structural separation and lattice dynamics in tennantite (fahlore): NMR, NQR and SQUID studies

    Get PDF
    Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T1 -1 and nuclear spin-echo decay rate T2 -1 in tennantite samples in the temperature range 4.2-210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2-300 K shows a Curie-Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions. Β© Springer-Verlag 2007

    Contribution of copper Nqr spectroscopy to the geological studies of complex sulfides and oxides

    Get PDF
    Many energy-related areas such as nuclear waste isolation, continental drilling, fossil fuel recovery, and geothermal energy are directly associated with an in-depth understanding of the earth sciences. Of particular interest is the development of analytical techniques which can augment existing ones in developing a better understanding of mineralogy. Presently, available instrumental techniques for studying mineralogical problems such as x-ray, electron and neutron diffraction, nuclear gamma resonance (NGR or MΓΆssbauer spectroscopy), electron microscopy and transmission electron microscopy have inherent limitations. These manifest themselves in being unable to characterize mineral samples fully, especially if they are polycrystalline. Nuclear Quadrupole Resonance (NQR) spectroscopy offers the potential for being able to obtain accurate high resolution spectra. These can then be interpreted to give structural information which can be related to local electronic structure, atomic arrangement, order/disorder phenomena, and crystal phase transformation. In addition, internal dynamics (ionic diffusion, metallic behavior, rotations, and so on) in the solid state can be studied. Furthermore, since NQR data are sensitive to changes in temperature and pressure, there is the possibility of obtaining stress/strain information. As applied to mineralogical and geological problems, NQR can also provide additional information, for example: chemical activity of minerals (genetic and technological aspects) at different hydrothermal conditions, the studies of impurity configurations in ore minerals and their distribution in crystal lattice, and other. This chapter highlights some NQR studies in copper sulfides, which demonstrate how NQR method can contribute to our understanding of geological problems. Examples are taken primarily from author's investigate groups. Β© 2009 Springer Science+Business Media B.V

    Phase transition and anomalous electronic behavior in the layered superconductor CuS probed by NQR

    Get PDF
    Nuclear quadrupole resonance (NQR) on copper nuclei has been applied for studies of the electronic properties of quasi-two-dimensional (2D) low-temperature superconductor CuS (covellite) in the temperature range of 1.47-290 K. Two NQR signals corresponding to two structural nonequivalent sites of copper, Cu(1) and Cu(2), have been found. The temperature dependences of copper quadrupole frequencies, linewidths, and spin-lattice relaxation rates altogether demonstrate the structural phase transition near 55 K, which is accompanied by transformations of the electronic spectrum not typical for simple metals. The analysis of NQR results and their comparison with literature data show that the valence of copper ions at both sites is intermediate between monovalent and divalent states with the dominance of the former. It has been found that there is a strong hybridization of the Cu(1) and Cu(2) conduction bands at low temperatures, indicating that the charge delocalization between these ions takes place even in 2D regime. On the basis of our data, the occurrence of an energy gap, charge fluctuations, and charge-density waves, as well as the nature of the phase transition in CuS, are discussed. It is concluded that some physical properties of CuS are similar to those of high-temperature superconductors in the normal state. Β© 2009 The American Physical Society

    Micron- to nano-scale intergrowths among members of the cuprobismutite series and paderaite: HRTEM and microanalytical evidence

    Get PDF
    Copyright Β© 2004 The Mineralogical SocietyCoherent intergrowths, at the lattice scale, between cuprobismutite (N = 2) and structurally related padraite along both major axes (15 Γ…and 17 Γ…repeats) of the two minerals are reported within skarn from Ocna de Fier, Romania. The structural subunit, DTD, 3 layers of padraite, is involved at interfaces of the two minerals along the 15 Γ…repeat, as well as in transposition of 1 padraite unit to 2 cuprobismutite units along the 17 Γ…repeat in slip defects. Lattice images obtained by HRTEM across intervals of 200 -400 nm show short- to long-range stacking sequences of cuprobismutite and padraite ribbons. Such nanoscale slabs mimic Β΅m-scale intergrowths observed in back-scattered electron images at three orders of magnitude greater. These slabs are compositionally equivalent to intermediaries in the cuprobismutite-padraite range encountered during microanalysis. Hodrushite (N = 1.5) is identified in the Β΅m-scale intergrowths, but its absence in the lattice images indicates that, in this case, formation of polysomes between structurally related phases is favoured instead of stacking disorder among cuprobismutite homologues. The tendency for short-range ordering and semi-periodic occurrence of polysomes suggests they are the result of an oscillatory chemical signal with periodicity varying from one to three repeats of 15 Γ…, rather than simple 'accidents' or irregular structural defects. Lead distribution along the polysomes is modelled as an output signal modulated by the periodicity of stacking sequences, with Pb carried within the D units of padraite. This type of modulator acts as a patterning operator activated by chemical waves with amplitudes that encompass the chemical difference between the minerals. Conversion of the padraite structural subunit DTD to the C unit of cuprobismutite, conserving interval width, emphasizes that polysomatic modularity also assists interference of chemical signals with opposite amplitudes. Observed coarsening of lattice-scale intergrowths up to the Β΅m-scale implies coupling between diffusion-controlled structural modulation, and rhythmic precipitation at the skarn front during crystallization.C.L. Ciobanu, A. Pring and N.J. Coo

    Phase transition and anomalous electronic behavior in layered dichalcogenide CuS (covellite) probed by NQR

    Full text link
    Nuclear quadrupole resonance (NQR) on copper nuclei has been applied for studies of the electronic properties of quasi-two-dimensional low-temperature superconductor CuS (covellite) in the temperature region between 1.47 and 290 K. Two NQR signals corresponding to two non-equivalent sites of copper in the structure, Cu(1) and Cu(2), has been found. The temperature dependences of copper quadrupole frequencies, line-widths and spin-lattice relaxation rates, which so far had never been investigated so precisely for this material, altogether demonstrate the structural phase transition near 55 K, which accompanies transformations of electronic spectrum not typical for simple metals. The analysis of NQR results and their comparison with literature data show that the valence of copper ions at both sites is intermediate in character between monovalent and divalent states with the dominant of the former. It has been found that there is a strong hybridization of Cu(1) and Cu(2) conduction bands at low temperatures, indicating that the charge delocalization between these ions takes place even in 2D regime. Based on our data, the occurrence of energy gap, charge fluctuations and charge-density waves, as well as the nature of phase transition in CuS are discussed. It is concluded that some physical properties of CuS are similar to those of high-temperature superconductors (HTSC) in normal state.Comment: to be publishe

    NQR/NMR and MΓΆssbauer spectroscopy of sulfides: Potential and versatility

    Get PDF
    Nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and nuclear gamma-resonance (NGR or MΓΆssbauer Effect) methods are generally described as highly sensitive tools in studies of local electronic structure and symmetry in solid-state materials. This is due to high informativity in electronic structure investigations, high resolution in phase-structural diagnostics (down to nano-scale), possibility to study polycrystalline and complex compounds, and to the non-destructive character of these methods. As applied to Earth sciences, both NQR/NMR and MΓΆssbauer spectroscopy methods contribute to mineralogical material science and mineral physics. Another important aspect is the fact that these methods, as demonstrated recently, belong to unique techniques suitable for on-line bulk mineralogical analysis. This includes remotely operated sensors used with conveyor systems in mining/materials handling and similar applications where real-time data collection/processing provides significant commercial benefits. These developments open new pathways for NQR/NMR and MΓΆssbauer spectroscopy applications. Notably, NQR/NMR and MΓΆssbauer effects are observed primarily on different nuclei-probes but provide similar information about the local properties of materials (hyperfine fields, electric field gradients and relaxation effects). This makes NQR/NMR and MΓΆssbauer methods mutually complementary despite their significant technical differences. This paper includes examples of recent applications of NQR, NMR and MΓΆssbauer spectroscopic tools to studies of copper-, antimony- and iron-containing sulfides, demonstrating how these methods can contribute to an improved understanding of geochemical problems. Β© 2013 E. Schweizerbart'sche Verlagsbuchhandlung, D-70176 Stuttgart

    Π ΠžΠ›Π¬ Π“Π•ΠΠžΠ’ RLM И AVRLM Π’ Π Π•ΠΠ›Π˜Π—ΠΠ¦Π˜Π˜ Π‘ΠŸΠ•Π¦Π˜Π€Π˜Π§Π•Π‘ΠšΠžΠ™ Π£Π‘Π’ΠžΠ™Π§Π˜Π’ΠžΠ‘Π’Π˜ К Π€ΠžΠœΠžΠ—Π£ Π£ РАПБА

    Get PDF
    As part of the study, DNA markers for local races L. maculans were identified and found that the AvrLm4-7 sequence in the selected fungus population is specifically recognized by the resistance Rlm4 and Rlm7 genes. The SCAR marker BN204 was identified, which allows us to identify homozygous and heterozygous plants carrying the Rlm4 gene. The work collection, including 22 varieties and 39 hybrids of rape, was analyzed using the DNA marker BN204. PCR results allowed us to establish that the number of individual plants with the resistance Rlm4 gene was higher than the number of stable forms characterized by the infection of leaf explants with pathogen races carrying the AvrLm4-7 sequence. It is supposed that these individual plants contain the Rlm4 gene, but they lack the Rlm7 gene.Π’ Ρ…ΠΎΠ΄Π΅ исслСдования выявлСны Π”ΠΠš-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ΠΊ мСстным расам L. maculans ΠΈ установлСно, Ρ‡Ρ‚ΠΎ Π² популяции ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π³Ρ€ΠΈΠ±Π° присутствуСт ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ AvrLm4-7, которая спСцифично распознаСтся Π³Π΅Π½Π°ΠΌΠΈ устойчивости Rlm4 ΠΈ Rlm7. ВыявлСн SCAR-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ BN204, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π³ΠΎΠΌΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½Ρ‹Π΅ ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½Ρ‹Π΅ растСния, нСсущиС Π³Π΅Π½ Rlm4. Π‘ использованиСм Π”ΠΠš-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° BN204 Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π° рабочая коллСкция, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ 22 сорта ΠΈ 39 сортообразцов рапса. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ПЦР ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ количСство ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… растСний с Π³Π΅Π½ΠΎΠΌ устойчивости Rlm4 Π±Ρ‹Π»ΠΎ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ количСство устойчивых Ρ„ΠΎΡ€ΠΌ, ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΌ зараТСния листовых эксплантов расами ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π°, нСсущими ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ AvrLm4-7. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ растСния содСрТат Π³Π΅Π½ Rlm4, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρƒ Π½ΠΈΡ… отсутствуСт Π³Π΅Π½ Rlm7.

    Search for ultra-high energy photons through preshower effect with gamma-ray telescopes: Study of CTA-North efficiency

    Get PDF
    IndexaciΓ³n ScopusAs ultra-high energy photons (EeV and beyond) propagate from their sources of production to Earth, radiation-matter interactions can occur, leading to an effective screening of the incident flux. In this energy domain, photons can undergo e+/eβˆ’ pair production when interacting with the surrounding geomagnetic field, which in turn can produce a cascade of electromagnetic particles called preshower. Such cascade can initiate air showers in the Earth's atmosphere that gamma-ray telescopes, such as the next-generation gamma-ray observatory Cherenkov Telescope Array, can detect through Cherenkov emission. In this paper, we study the feasibility of detecting such phenomenon using Monte-Carlo simulations of nearly horizontal air showers for the example of the La Palma site of the Cherenkov Telescope Array. We investigate the efficiency of multivariate analysis in correctly identifying preshower events initiated by 40 EeV photons and cosmic ray dominated background simulated in the energy range 10 TeV – 10 EeV. The effective areas for such kind of events are also investigated and event rate predictions related to different ultra-high energy photons production models are presented. While the expected number of preshowers from diffuse emission of UHE photons for 30 hours of observation is estimated around 3.3Γ—10βˆ’5 based on the upper limits put by the Pierre Auger Observatory, this value is at the level of 2.7Γ—10βˆ’4 (5.7Γ—10βˆ’5) when considering the upper limits of the Pierre Auger Observatory (Telescope Array) on UHE photon point sources. However, UHE photon emission may undergo possible ”boosting” due to gamma-ray burst, increasing the expected number of preshower events up to 0.17 and yielding a minimum required flux of ~ 0.2 kmβˆ’2yrβˆ’1 to obtain one preshower event, which is about a factor 10 higher than upper limits put by the Pierre Auger Observatory and Telescope Array (0.034 and 0.019 kmβˆ’2yrβˆ’1, respectively). Β© 2020https://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S092765052030061X?via%3Dihu
    • …
    corecore