73 research outputs found

    Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining

    Full text link
    [EN] Background: Public health in several countries is characterized by a shortage of professionals and a lack of economic resources. Monitoring and redesigning processes can foster the success of health care institutions, enabling them to provide a quality service while simultaneously reducing costs. Process mining, a discipline that extracts knowledge from information system data to analyze operational processes, affords an opportunity to understand health care processes. Objective: Health care processes are highly flexible and multidisciplinary, and health care professionals are able to coordinate in a variety of different ways to treat a diagnosis. The aim of this work was to understand whether the ways in which professionals coordinate their work affect the clinical outcome of patients. Methods: This paper proposes a method based on the use of process mining to identify patterns of collaboration between physician, nurse, and dietitian in the treatment of patients with type 2 diabetes mellitus and to compare these patterns with the clinical evolution of the patients within the context of primary care. Clustering is used as part of the preprocessing of data to manage the variability, and then process mining is used to identify patterns that may arise. Results: The method is applied in three primary health care centers in Santiago, Chile. A total of seven collaboration patterns were identified, which differed primarily in terms of the number of disciplines present, the participation intensity of each discipline, and the referrals between disciplines. The pattern in which the three disciplines participated in the most equitable and comprehensive manner had a lower proportion of highly decompensated patients compared with those patterns in which the three disciplines participated in an unbalanced manner. Conclusions: By discovering which collaboration patterns lead to improved outcomes, health care centers can promote the most successful patterns among their professionals so as to improve the treatment of patients. Process mining techniques are useful for discovering those collaborations patterns in flexible and unstructured health care processes.This paper was partially funded by the National Commission for Scientific and Technological Research, the Formation of Advanced Human Capital Program and the National Fund for Scientific and Technological Development (CONICYT-PCHA/Doctorado Nacional/2016-21161705 and CONICYT-FONDECYT/1150365; Chile). The authors would like to thank Ancora UC primary health care centers for their help with this research. The founding sponsors had no role in the design of the study in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.Conca, T.; Saint Pierre, C.; Herskovic, V.; Sepulveda, M.; Capurro, D.; Prieto, F.; Fernández Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. JOURNAL OF MEDICAL INTERNET RESEARCH. 20(4). https://doi.org/10.2196/jmir.8884S204Chen, C.-C., Tseng, C.-H., & Cheng, S.-H. (2013). Continuity of Care, Medication Adherence, and Health Care Outcomes Among Patients With Newly Diagnosed Type 2 Diabetes. Medical Care, 51(3), 231-237. doi:10.1097/mlr.0b013e31827da5b9International Diabetes FederationIDF20152018-03-19IDF Diabetes Atlas 7th Edition (2015) https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventh-edition.htmlMinisterio de Salud de Chileminsal.cl20102018-03-23Encuesta Nacional de Salud ENS Chile 2009-2010 http://www.minsal.cl/estudios_encuestas_salud/Ministerio de Salud de Chileminsal.cl20102018-03-20Guía Clinica Diabetes Mellitus Tipo 2 http://www.minsal.cl/portal/url/item/72213ed52c3e23d1e04001011f011398.pdfSapunar Z., J. (2016). EPIDEMIOLOGÍA DE LA DIABETES MELLITUS EN CHILE. Revista Médica Clínica Las Condes, 27(2), 146-151. doi:10.1016/j.rmclc.2016.04.003World Health Organizationwho.int2018-03-20Global Report on Diabetes http://www.who.int/diabetes/global-report/en/Poblete, F., Glasinovic, A., Sapag, J., Barticevic, N., Arenas, A., & Padilla, O. (2015). Apoyo social y salud cardiovascular: adaptación de una escala de apoyo social en pacientes hipertensos y diabéticos en la atención primaria chilena. Atención Primaria, 47(8), 523-531. doi:10.1016/j.aprim.2014.10.010Tuligenga, R. H., Dugravot, A., Tabák, A. G., Elbaz, A., Brunner, E. J., Kivimäki, M., & Singh-Manoux, A. (2014). Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. The Lancet Diabetes & Endocrinology, 2(3), 228-235. doi:10.1016/s2213-8587(13)70192-xGamiochipi, M., Cruz, M., Kumate, J., & Wacher, N. H. (2016). Effect of an intensive metabolic control lifestyle intervention in type-2 diabetes patients. Patient Education and Counseling, 99(7), 1184-1189. doi:10.1016/j.pec.2016.01.017Wagner, E. H. (2001). Effect of Improved Glycemic Control on Health Care Costs and Utilization. JAMA, 285(2), 182. doi:10.1001/jama.285.2.182McDonald, J., Jayasuriya, R., & Harris, M. F. (2012). The influence of power dynamics and trust on multidisciplinary collaboration: a qualitative case study of type 2 diabetes mellitus. BMC Health Services Research, 12(1). doi:10.1186/1472-6963-12-63Gucciardi, E., Espin, S., Morganti, A., & Dorado, L. (2016). Exploring interprofessional collaboration during the integration of diabetes teams into primary care. BMC Family Practice, 17(1). doi:10.1186/s12875-016-0407-1Caron, F., Vanthienen, J., Vanhaecht, K., Limbergen, E. V., De Weerdt, J., & Baesens, B. (2014). Monitoring care processes in the gynecologic oncology department. Computers in Biology and Medicine, 44, 88-96. doi:10.1016/j.compbiomed.2013.10.015Rothman, A. A., & Wagner, E. H. (2003). Chronic Illness Management: What Is the Role of Primary Care? Annals of Internal Medicine, 138(3), 256. doi:10.7326/0003-4819-138-3-200302040-00034Organisation for Economic Co-operation and DevelopmentOECD20162018-03-20OECD Health Policy Overview: Health Policy in Chile http://www.oecd.org/els/health-systems/health-policy-in-your-country.htmRojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Mans, R. S., van der Aalst, W. M. P., & Vanwersch, R. J. B. (2015). Process Mining in Healthcare. SpringerBriefs in Business Process Management. doi:10.1007/978-3-319-16071-9Van der Aalst, W. M. P. (2011). Process Mining. doi:10.1007/978-3-642-19345-3Kim, E., Kim, S., Song, M., Kim, S., Yoo, D., Hwang, H., & Yoo, S. (2013). Discovery of Outpatient Care Process of a Tertiary University Hospital Using Process Mining. Healthcare Informatics Research, 19(1), 42. doi:10.4258/hir.2013.19.1.42Harper, P. R., Sayyad, M. G., de Senna, V., Shahani, A. K., Yajnik, C. S., & Shelgikar, K. M. (2003). A systems modelling approach for the prevention and treatment of diabetic retinopathy. European Journal of Operational Research, 150(1), 81-91. doi:10.1016/s0377-2217(02)00787-7Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Ferreira, D., Zacarias, M., Malheiros, M., & Ferreira, P. (2007). Approaching Process Mining with Sequence Clustering: Experiments and Findings. Business Process Management, 360-374. doi:10.1007/978-3-540-75183-0_26Cheong, L. H., Armour, C. L., & Bosnic-Anticevich, S. Z. (2013). Multidisciplinary collaboration in primary care: through the eyes of patients. Australian Journal of Primary Health, 19(3), 190. doi:10.1071/py12019Boyle, E., Saunders, R., & Drury, V. (2016). A qualitative study of patient experiences of Type 2 Diabetes care delivered comparatively by General Practice Nurses and Medical Practitioners. Journal of Clinical Nursing, 25(13-14), 1977-1986. doi:10.1111/jocn.13219UddinSHossainLEffects of Physician Collaboration Network on Hospital Outcomes2012Fifth Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2012)2012Melbourne, AustraliaBorgermans, L., Goderis, G., Van Den Broeke, C., Verbeke, G., Carbonez, A., Ivanova, A., … Grol, R. (2009). Interdisciplinary diabetes care teams operating on the interface between primary and specialty care are associated with improved outcomes of care: findings from the Leuven Diabetes Project. BMC Health Services Research, 9(1). doi:10.1186/1472-6963-9-179Bosch, M., Dijkstra, R., Wensing, M., van der Weijden, T., & Grol, R. (2008). Organizational culture, team climate and diabetes care in small office-based practices. BMC Health Services Research, 8(1). doi:10.1186/1472-6963-8-180Counsell, S. R., Callahan, C. M., Clark, D. O., Tu, W., Buttar, A. B., Stump, T. E., & Ricketts, G. D. (2007). Geriatric Care Management for Low-Income Seniors. JAMA, 298(22), 2623. doi:10.1001/jama.298.22.2623Anderson, J. G. (2002). Evaluation in health informatics: social network analysis. Computers in Biology and Medicine, 32(3), 179-193. doi:10.1016/s0010-4825(02)00014-8Gray, J. E., Davis, D. A., Pursley, D. M., Smallcomb, J. E., Geva, A., & Chawla, N. V. (2010). Network Analysis of Team Structure in the Neonatal Intensive Care Unit. PEDIATRICS, 125(6), e1460-e1467. doi:10.1542/peds.2009-2621Mian, O., Koren, I., & Rukholm, E. (2012). Nurse practitioners in Ontario primary healthcare: Referral patterns and collaboration with other healthcare professionals. Journal of Interprofessional Care, 26(3), 232-239. doi:10.3109/13561820.2011.650300Crossley, N., Bellotti, E., Edwards, G., Everett, M. G., Koskinen, J., & Tranmer, M. (2015). Social Network Analysis for Ego-Nets. doi:10.4135/9781473911871Ministerio de Salud de Chile2018-03-20Fondo Nacional de Salud https://www.fonasa.cl/sites/fonasa/beneficiariosGoldstein, D. E., Little, R. R., Lorenz, R. A., Malone, J. I., Nathan, D., Peterson, C. M., & Sacks, D. B. (2004). Tests of Glycemia in Diabetes. Diabetes Care, 27(7), 1761-1773. doi:10.2337/diacare.27.7.1761Meduru, P., Helmer, D., Rajan, M., Tseng, C.-L., Pogach, L., & Sambamoorthi, U. (2007). Chronic Illness with Complexity: Implications for Performance Measurement of Optimal Glycemic Control. Journal of General Internal Medicine, 22(S3), 408-418. doi:10.1007/s11606-007-0310-5Vermeire, E., Hearnshaw, H., Van Royen, P., & Denekens, J. (2001). Patient adherence to treatment: three decades of research. A comprehensive review. Journal of Clinical Pharmacy and Therapeutics, 26(5), 331-342. doi:10.1046/j.1365-2710.2001.00363.xKarter, A. J., Parker, M. M., Moffet, H. H., Ahmed, A. T., Ferrara, A., Liu, J. Y., & Selby, J. V. (2004). Missed Appointments and Poor Glycemic Control. Medical Care, 42(2), 110-115. doi:10.1097/01.mlr.0000109023.64650.73World Health Organization20032018-03-20Adherence to long-term therapies: evidence for action http://www.who.int/chp/knowledge/publications/adherence_report/en/Toth, E. L., Majumdar, S. R., Guirguis, L. M., Lewanczuk, R. Z., Lee, T. K., & Johnson, J. A. (2003). Compliance with Clinical Practice Guidelines for Type 2 Diabetes in Rural Patients: Treatment Gaps and Opportunities for Improvement. Pharmacotherapy, 23(5), 659-665. doi:10.1592/phco.23.5.659.32203Melnikow, J., & Kiefe, C. (1994). Patient compliance and medical research. Journal of General Internal Medicine, 9(2), 96-105. doi:10.1007/bf02600211Fernandez-Llatas, C., Valdivieso, B., Traver, V., & Benedi, J. M. (2014). Using Process Mining for Automatic Support of Clinical Pathways Design. Data Mining in Clinical Medicine, 79-88. doi:10.1007/978-1-4939-1985-7_5Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Wishah, R. A., Al-Khawaldeh, O. A., & Albsoul, A. M. (2015). Impact of pharmaceutical care interventions on glycemic control and other health-related clinical outcomes in patients with type 2 diabetes: Randomized controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(4), 271-276. doi:10.1016/j.dsx.2014.09.00

    Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010

    Get PDF
    PURPOSE: Two selective estrogen receptor modulators (SERMs), tamoxifen and raloxifene, have been shown in randomized clinical trials to reduce the risk of developing primary invasive breast cancer (IBC) in high-risk women. In 1998, the U.S. Food and Drug Administration (FDA) used these studies as a basis for approving tamoxifen for primary breast chemoprevention in both premenopausal and postmenopausal women at high risk. In 2007, the FDA approved raloxifene for primary breast cancer chemoprevention for postmenopausal women. METHODS: Data from the year 2010 National Health Interview Survey (NHIS) were analyzed to estimate the prevalence of tamoxifen and raloxifene use for chemoprevention of primary breast cancers among U.S. women. RESULTS: Prevalence of use of chemopreventive agents for primary tumors was 20,598 (95% CI, 518–114,864) for U.S. women aged 35 to 79 for tamoxifen. Prevalence was 96,890 (95% CI, 41,277–192,391) for U.S. women aged 50 to79 for raloxifene. CONCLUSION: Use of tamoxifen and raloxifene for prevention of primary breast cancers continues to be low. In 2010, women reporting medication use for breast cancer chemoprevention were primarily using the more recently FDA-approved drug raloxifene. Multiple possible explanations for the low use exist, including lack of awareness and/or concern about side effects among primary care physicians and patients

    Effect of incentives on insecticide-treated bed net use in sub-Saharan Africa: a cluster randomized trial in Madagascar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide-treated bed nets (ITNs) have been shown to reduce morbidity and mortality due to malaria in sub-Saharan Africa. Strategies using incentives to increase ITN use could be more efficient than traditional distribution campaigns. To date, behavioural incentives have been studied mostly in developed countries. No study has yet looked at the effect of incentives on the use of ITNs. Reported here are the results of a cluster randomized controlled trial testing household-level incentives for ITN use following a free ITN distribution campaign in Madagascar.</p> <p>Methods</p> <p>The study took place from July 2007 until February 2008. Twenty-one villages were randomized to either intervention or control clusters. Households in both clusters received a coupon redeemable for one ITN. After one month, intervention households received a bonus for ITN use, determined by visual confirmation of a mounted ITN. Data were collected at baseline, one month and six months. Both unadjusted and adjusted results, using cluster specific methods, are presented.</p> <p>Results</p> <p>At baseline, 8.5% of households owned an ITN and 6% were observed to have a net mounted over a bed in the household. At one month, there were no differences in ownership between the intervention and control groups (99.5% vs. 99.4%), but net use was substantially higher in the intervention group (99% vs. 78%), with an adjusted risk ratio of 1.24 (95% CI: 1.10 to 1.40; p < 0.001). After six months, net ownership had decreased in the intervention compared to the control group (96.7% vs. 99.7%), with an adjusted risk ratio of 0.97 (p < 0.01). There was no difference between the groups in terms of ITN use at six months; however, intervention households were more likely to use a net that they owned (96% vs. 90%; p < 0.001).</p> <p>Conclusions</p> <p>Household-level incentives have the potential to significantly increase the use of ITNs in target households in the immediate-term, but, over time, the use of ITNs is similar to households that did not receive incentives. Providing incentives for behaviour change is a promising tool that can complement traditional ITN distribution programmes and improve the effectiveness of ITN programmes in protecting vulnerable populations, especially in the short-term.</p

    Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Mammography is less effective in detecting cancer in dense than in fatty breasts. METHODS: We undertook a systematic search in PubMed to identify studies on women with dense breasts who underwent screening with mammography supplemented with ultrasound. A meta-analysis was undertaken on the proportion of cancers detected only by ultrasound, out of all screen-detected cancers, and the proportion of women with negative mammography who were referred for assessment following ultrasound screening. RESULTS: Twenty-nine studies satisfied our inclusion criteria. The proportion of total cancers detected only by ultrasound was 0.29 (95% CI: 0.27-0.31), consistent with an approximately 40% increase in the detection of cancers compared to mammography. In the studied populations, this translated into an additional 3.8 (95% CI: 3.4-4.2) screen-detected cases per 1000 mammography-negative women. About 13% (32/248) of cancers were in situ from 17 studies with information on this subgroup. Ultrasound approximately doubled the referral for assessment in three studies with these data. CONCLUSIONS: Studies have consistently shown an increased detection of breast cancer by supplementary ultrasound screening. An inclusion of supplementary ultrasound into routine screening will need to consider the availability of ultrasound and diagnostic assessment capacities.Department of Health Policy Research Programme (106/0001). Cancer Research UK (grants C8162/A16892 and C569/A16891)

    Bestimmung des Kupfers in organischen Verbindungen

    No full text

    Eine Bestimmung von Schwefel in organischen Verbindungen

    No full text

    Über die Bestimmung von Thallium in organischen Verbindungen

    No full text

    Die symbiose der l�use und federlinge

    No full text
    corecore