6,008 research outputs found

    Metal Chalcogenide Clusters with Closed Electronic Shells and the Electronic Properties of Alkalis and Halogens

    Get PDF
    Clusters with filled electronic shells and a large gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are generally energetically and chemically stable. Enabling clusters to become electron donors with low ionization energies or electron acceptors with high electron affinities usually requires changing the valence electron count. Here we demonstrate that a metal cluster may be transformed from an electron donor to an acceptor by exchanging ligands while the neutral form of the clusters has closed electronic shells. Our studies on Co6Te8(PEt3),(CO) (m + n = 6) clusters show that Co6Te8(PEt3)(6) has a closed electronic shell and a low ionization energy of 4.74 eV, and the successive replacement of PEt3 by CO ligands ends with Co6Te8(CO)(6) exhibiting halogen-like behavior. Both the low ionization energy Co6Te8(PEt3)(6) and high electron affinity Co6Te8(CO)(6) have closed electronic shells marked by high HOMO-LUMO gaps of 1.24 and 1.39 eV, respectively. Further, the clusters with an even number of ligands favor a symmetrical placement of ligands around the metal core

    Pseudopotential Calculations for Simple Metals

    Get PDF

    Building stock dynamics and its impacts on materials and energy demand in China

    Get PDF
    China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China

    The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks

    Get PDF
    We have systematically studied a series of eight metal-organic frameworks (MOFs) in which the secondary building unit is a manganese trimer cluster, and the linkers are differently substituted benzene dicarboxylic acids (BDC). The optical band gap energy of the compounds vary from 2.62 eV to 3.57 eV, and theoretical studies find that different functional groups result in new states in the conduction band, which lie in the gap and lower the optical band gap energy. The optical absorption between the filled Mn 3d states and the ligands is weak due to minimal overlap of the states, and the measured optical band gap energy is due to transitions on the BDC linker. The Mn atoms in the MOFs have local moments of 5 mu B, and selected MOFs are found to be antiferromagnetic, with weak coupling between the cluster units, and paramagnetic above 10 K

    Magnetic coupling in neutral and charged Cr-2, Mn-2, and CrMn dimers

    Get PDF
    Theoreticalab initio studies of neutral, cationic and anionic Cr2, Mn2, and CrMn dimers have been carried out to explore the progression of magnetic coupling with the number of electrons. It is shown that while Cr2 and Cr−2 have antiferromagnetically coupled atomic spins, Cr+2 has a ferromagneticground state closely followed by an antiferromagnetic state. On the other hand, all Mn2 dimers are ferromagnetic, irrespective of the charge. The neutral CrMn is ferrimagnetic while the charged CrMn are antiferromagnetic. In all cases, the charged dimers are found to be more stable than the neutral ones. The results are compared with available calculations and experiments and the difficulties associated with theoretical description and the experimental interpretations are discussed
    corecore