6,008 research outputs found
Recommended from our members
Energy and CO2 implications of decarbonization strategies for China beyond efficiency: Modeling 2050 maximum renewable resources and accelerated electrification impacts
Energy efficiency has played an important role in helping China achieve its domestic and international energy and climate change mitigation targets, but more significant near-term actions to decarbonize are needed to help China and the world meet the Paris Agreement goals. Accelerating electrification and maximizing supply-side and demand-side renewable adoption are two recent strategies being considered in China, but few bottom-up modeling studies have evaluated the potential near-term impacts of these strategies across multiple sectors. To fill this research gap, we use a bottom-up national end-use model that integrates energy supply and demand systems and conduct scenario analysis to evaluate even lower CO2 emissions strategies and subsequent pathways for China to go beyond cost-effective efficiency and fuel switching. We find that maximizing non-conventional electric and renewable technologies can help China peak its national CO2 emissions as early as 2025, with significant additional CO2 emission reductions on the order of 7 Gt CO2 annually by 2050. Beyond potential CO2 reductions from power sector decarbonization, significant potential lies in fossil fuel displaced by renewable heat in industry. These results suggest accelerating the utilization of non-conventional electric and renewable technologies present additional CO2 reduction opportunities for China, but new policies and strategies are needed to change technology choices in the demand sectors. Managing the pace of electrification in tandem with the pace of decarbonization of the power sector will also be crucial to achieving CO2 reductions from the power sector in a scenario of increased electrification
Recommended from our members
Improving the energy efficiency of room air conditioners in China: Costs and benefits
China is the world's largest consumer of room air conditioners, and it contributes about a quarter of global space cooling CO2 emissions. We model the costs and benefits of recently proposed new room air conditioner minimum energy performance standards (MEPS) in China. Our results suggest that newly proposed MEPS brings accumulative CO2 emissions reductions of 12.8% between 2019 and 2050, and accumulative bill saving of 2620 billion RMB to China's consumers. The benefits of the proposed MEPS decrease with longer MEPS revision intervals and increase with shorter intervals—indicating that the intervals should be balanced to maximize benefits while accommodating constraints due to air conditioner manufacturer design cycles. We also model potential nationwide benefits from higher MEPS. Across two increasingly aggressive MEPS scenarios, China's room air conditioner electricity consumption and CO2 emissions in 2050 are both reduced by 15–53% compared to the proposed MEPS. The highest-efficiency scenario (reaching MEPS of annual performance factor 5.4 in 2025) provides the largest long-term national benefits. These results could inform development of a Chinese regulatory regime that effectively updates room air conditioner MEPS. Because China is the world's largest manufacturer of room air conditioners, the economic, energy, and emissions benefits resulting from higher Chinese MEPS could also have a global reach
Recommended from our members
Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050
As China’s rapid urbanization continues and urban dwellers become more affluent, energy use in buildings is expected to grow. To understand how this growth can be slowed, we explore four scenarios for Chinese buildings, ranging from a high-energy-demand scenario with no new energy policies to lowest energy demand under a techno-economic-potential scenario that assumes full deployment of cost-effective efficient and renewable technologies by 2050. We show that, in the high energy demand scenario, building energy demand has an average annual growth rate of about 2.8%, with slower growth rates in the other three scenarios. In all scenarios, CO2 emissions grow slower than energy, with building CO2 peaking around 2045 in the high energy demand scenario, and as early as 2030 in the techno-economic-potential scenario. We show that although various technological solutions, systems and practices can be very effective in minimizing building energy use, rigorous policies are needed to overcome multiple implementation barriers
Metal Chalcogenide Clusters with Closed Electronic Shells and the Electronic Properties of Alkalis and Halogens
Clusters with filled electronic shells and a large gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are generally energetically and chemically stable. Enabling clusters to become electron donors with low ionization energies or electron acceptors with high electron affinities usually requires changing the valence electron count. Here we demonstrate that a metal cluster may be transformed from an electron donor to an acceptor by exchanging ligands while the neutral form of the clusters has closed electronic shells. Our studies on Co6Te8(PEt3),(CO) (m + n = 6) clusters show that Co6Te8(PEt3)(6) has a closed electronic shell and a low ionization energy of 4.74 eV, and the successive replacement of PEt3 by CO ligands ends with Co6Te8(CO)(6) exhibiting halogen-like behavior. Both the low ionization energy Co6Te8(PEt3)(6) and high electron affinity Co6Te8(CO)(6) have closed electronic shells marked by high HOMO-LUMO gaps of 1.24 and 1.39 eV, respectively. Further, the clusters with an even number of ligands favor a symmetrical placement of ligands around the metal core
Recommended from our members
Fighting coal — Effectiveness of coal-replacement programs for residential heating in China: Empirical findings from a household survey
Household fuel substitution has been a crucial step for controlling air pollution in China, but the performance evaluation of household fuel substitution policies is overlooked. This study capitalized on the opportunity to use data collected during the household coal-replacement program in North China to evaluate the effect of a mandatory policy on fuel substitution at the micro-level. The results indicate that there is a significant effect of the coal-replacement program on fuel substitution, as we expected. The coal-to-electricity policy is effective in achieving the goal of a clean winter but not a warm winter due to the decline of delivered energy, while the high-quality coal replacement policy results in better performance in delivered energy but no improvement in indoor air quality. It is recommended to prioritize supporting measures on both the supply and demand sides before implementation, along with undertaking differential measures during the implementation phase to better address energy inequality
Building stock dynamics and its impacts on materials and energy demand in China
China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China
The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks
We have systematically studied a series of eight metal-organic frameworks (MOFs) in which the secondary building unit is a manganese trimer cluster, and the linkers are differently substituted benzene dicarboxylic acids (BDC). The optical band gap energy of the compounds vary from 2.62 eV to 3.57 eV, and theoretical studies find that different functional groups result in new states in the conduction band, which lie in the gap and lower the optical band gap energy. The optical absorption between the filled Mn 3d states and the ligands is weak due to minimal overlap of the states, and the measured optical band gap energy is due to transitions on the BDC linker. The Mn atoms in the MOFs have local moments of 5 mu B, and selected MOFs are found to be antiferromagnetic, with weak coupling between the cluster units, and paramagnetic above 10 K
Magnetic coupling in neutral and charged Cr-2, Mn-2, and CrMn dimers
Theoreticalab initio studies of neutral, cationic and anionic Cr2, Mn2, and CrMn dimers have been carried out to explore the progression of magnetic coupling with the number of electrons. It is shown that while Cr2 and Cr−2 have antiferromagnetically coupled atomic spins, Cr+2 has a ferromagneticground state closely followed by an antiferromagnetic state. On the other hand, all Mn2 dimers are ferromagnetic, irrespective of the charge. The neutral CrMn is ferrimagnetic while the charged CrMn are antiferromagnetic. In all cases, the charged dimers are found to be more stable than the neutral ones. The results are compared with available calculations and experiments and the difficulties associated with theoretical description and the experimental interpretations are discussed
- …