33 research outputs found

    Applying generalized Pad\'e approximants in analytic QCD models

    Full text link
    A method of resummation of truncated perturbation series, related to diagonal Pad\'e approximants but giving results independent of the renormalization scale, was developed more than ten years ago by us with a view of applying it in perturbative QCD. We now apply this method in analytic QCD models, i.e., models where the running coupling has no unphysical singularities, and we show that the method has attractive features such as a rapid convergence. The method can be regarded as a generalization of the scale-setting methods of Stevenson, Grunberg, and Brodsky-Lepage-Mackenzie. The method involves the fixing of various scales and weight coefficients via an auxiliary construction of diagonal Pad\'e approximant. In low-energy QCD observables, some of these scales become sometimes low at high order, which prevents the method from being effective in perturbative QCD where the coupling has unphysical singularities at low spacelike momenta. There are no such problems in analytic QCD.Comment: 14 pages; extended presentation of the analytic QCD models in Sec.IV; two references added ([37,38]); version to appear in Phys.Rev.

    On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Get PDF
    A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed

    Nonmonotonic Decay of Nonequilibrium Polariton Condensate in Direct-Gap Semiconductors

    Full text link
    Time evolution of a nonequilibrium polariton condensate has been studied in the framework of a microscopic approach. It has been shown that due to polariton-polariton scattering a significant condensate depletion takes place in a comparatively short time interval. The condensate decay occurs in the form of multiple echo signals. Distribution-function dynamics of noncondensate polaritons have been investigated. It has been shown that at the initial stage of evolution the distribution function has the form of a bell. Then oscillations arise in the contour of the distribution function, which further transform into small chaotic ripples. The appearance of a short-wavelength wing of the distribution function has been demonstrated. We have pointed out the enhancement and then partial extinction of the sharp extra peak arising within the time interval characterized by small values of polariton condensate density and its relatively slow changes.Comment: 20 pages, LaTeX 2.09; in press in PR

    Summing Divergent Perturbative Series in a Strong Coupling Limit. The Gell-Mann - Low Function of the \phi^4 Theory

    Full text link
    An algorithm is proposed for determining asymptotics of the sum of a perturbative series in the strong coupling limit using given values of the expansion coefficients. Operation of the algorithm is illustrated by test examples, method for estimating errors is developed, and an optimization procedure is described. Application of the algorithm to the ϕ4\phi^4 theory gives a behavior β(g)7.4g0.96\beta(g)\approx 7.4 g^{0.96} at large gg for its Gell-Mann -- Low function. The fact that the exponent is close to unity can be interpreted as a manifestation of the logarithmic branching of the type β(g)g(lng)γ\beta(g)\sim g (\ln g)^{-\gamma} (with γ0.14\gamma\approx 0.14), which is confirmed by independent evidence. In any case, the ϕ4\phi^4 theory is internally consistent. The procedure of summing perturbartive series with arbitrary values of expansion parameter is discussed.Comment: 23 pages, PD

    What are the experimentally observable effects of vertex corrections in superconductors?

    Full text link
    We calculate the effects of vertex corrections, of non-constant density of states and of a (self-consistently determined) phonon self-energy for the Holstein model on a 3D cubic lattice. We replace vertex corrections with a Coulomb pseudopotential, mu*, adjusted to give the same Tc, and repeat the calculations, to see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable effects ofvertex corrections on a variety of thermodynamic properties of superconductors. To this end, we employ conserving approximations (in the local approximation) to calculate the superconducting critical temperatures, isotope coefficients, superconducting gaps, free-energy differences and thermodynamic critical fields for a range of parameters. We find that the dressed value of lambda is significantly larger than the bare value. While vertex corrections can cause significant changes in all the above quantities (even whenthe bare electron-phonon coupling is small), the changes can usually be well-modeled by an appropriate Coulomb pseudopotential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections that can not be mimicked by a mu*.Comment: 28 pages, 12 figure

    Polaron Variational Methods In The Particle Representation Of Field Theory : I. General Formalism

    Get PDF
    We apply nonperturbative variational techniques to a relativistic scalar field theory in which heavy bosons (``nucleons'') interact with light scalar mesons via a Yukawa coupling. Integrating out the meson field and neglecting the nucleon vacuum polarization one obtains an effective action in terms of the heavy particle coordinates which is nonlocal in the proper time. As in Feynman's polaron approach we approximate this action by a retarded quadratic action whose parameters are to be determined variationally on the pole of the two-point function. Several ans\"atze for the retardation function are studied and for the most general case we derive a system of coupled variational equations. An approximate analytic solution displays the instability of the system for coupling constants beyond a critical value.Comment: 33 pages standard LaTeX, 3 uuencoded gzipped postscript figures embedded with psfig.st

    Statistical Mechanics and the Physics of the Many-Particle Model Systems

    Full text link
    The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and the methods of the quantum theory of magnetism, including the method of two-time temperature Green's functions, which is widely used in various physical problems of many-particle systems with interaction. Quantum cooperative effects and quasiparticle dynamics in the basic microscopic models of quantum theory of magnetism: the Heisenberg model, the Hubbard model, the Anderson Model, and the spin-fermion model are considered in the framework of novel self-consistent-field approximation. We present a comparative analysis of these models; in particular, we compare their applicability for description of complex magnetic materials. The concepts of broken symmetry, quantum protectorate, and quasiaverages are analyzed in the context of quantum theory of magnetism and theory of superconductivity. The notion of broken symmetry is presented within the nonequilibrium statistical operator approach developed by D.N. Zubarev. In the framework of the latter approach we discuss the derivation of kinetic equations for a system in a thermal bath. Finally, the results of investigation of the dynamic behavior of a particle in an environment, taking into account dissipative effects, are presented.Comment: 77 pages, 1 figure, Refs.37

    Nonequilibrium Quantum Dynamics of Second Order Phase Transitions

    Get PDF
    We use the so-called Liouville-von Neumann (LvN) approach to study the nonequilibrium quantum dynamics of time-dependent second order phase transitions. The LvN approach is a canonical method that unifies the functional Schr\"{o}dinger equation for the quantum evolution of pure states and the LvN equation for the quantum description of mixed states of either equilibrium or nonequilibrium. As nonequilibrium quantum mechanical systems we study a time-dependent harmonic and an anharmonic oscillator and find the exact Fock space and density operator for the harmonic oscillator and the nonperturbative Gaussian Fock space and density operator for the anharmonic oscillator. The density matrix and the coherent, thermal and coherent-thermal states are found in terms of their classical solutions, for which the effective Hamiltonians and equations of motion are derived. The LvN approach is further extended to quantum fields undergoing time-dependent second order phase transitions. We study an exactly solvable model with a finite smooth quench and find the two-point correlation functions. Due to the spinodal instability of long wavelength modes the two-point correlation functions lead to the t1/4t^{1/4}-scaling relation during the quench and the Cahn-Allen scaling relation t1/2t^{1/2} after the completion of quench. Further, after the finite quench the domain formation shows a time-lag behavior at the cubic power of quench period. Finally we study the time-dependent phase transition of a self-interacting scalar field.Comment: discussion on back-reaction added, typos corrected, references added, final version for PR

    Convergence and Gauge Dependence Properties of the Resummed One-loop Quark-Quark Scattering Amplitude in Perturbative QCD

    Full text link
    The one-loop QCD effective charge αseff\alpha_s^{eff} for quark-quark scattering is derived by diagrammatic resummation of the one-loop amplitude using an arbitary covariant gauge. Except for the particular choice of gauge parameter ξ=3\xi = -3, αseff\alpha_s^{eff} is found to {\it increase} with increasing physical scale, QQ, as lnQ\ln Q or ln2Q\ln^2 Q. For ξ=3\xi = -3, αseff\alpha_s^{eff} decreases with increasing QQ and satisfies a renormalisation group equation. Also, except for the case ξ=19/9\xi = 19/9, convergence radii of geometric series are found to impose upper limits on QQ.Comment: 28 pages, 5 tables, 5 figures. v3 The one-loop amplitudes in Section 2 are recalculated using dimensional regularisation, and several errors in the on-shell calculation of Reference[1] are pointed out. v4 one figure removed one added. Three tables and new text in Section 5 added. Published versio
    corecore