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Abstract. A two-component particle model of Boltzmann-Vlasov type kinetic equa-
tions in the form of special nonlinear integro-differential hydrodynamic systems on an
infinite-dimensional functional manifold is discussed. We show that such systems are
naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some
one-dimensional particle flows with pointwise interaction potential between particles. A new
type of hydrodynamic two-component Benney equations is constructed and their Hamilto-
nian structure is analyzed.
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1. INTRODUCTION

It is well known [1,2] that the classical Boltzmann equation under the no correlation
condition describes long waves in dense gas with short-range interaction potential.
The same equation, which is called the Vlasov equation [3] in the one-dimensional
case, is clearly equivalent to the hydrodynamic equations for long waves in an ideal
incompressible liquid with a free surface under gravity. It is also quite easy to see
that in the classical random phase approximation this equation reduces to the com-
pletely integrable nonlinear Schrodinger equation [1,2,7-9] on the R axis. These
equivalences for the hydrodynamic Benney type equations can be used for studying
chaos in many-particle systems and turbulence arising in fluid flow. Yet the dynamical
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many-particle systems discussed in [1,2] do not possess an important intrinsic property
of particle motion in a liquid — convective mass transfer of particles in a fixed volume —
which is known to always accompany a transition from laminar to turbulent flow and
cause convective vortex motion. Moreover, these models do not possess an intrinsic
dry viscosity for the particle flows.

To partially overcome the inadequacies noted for the Benney type hydrodynamic
model, in this investigation we introduce a new generalized dynamical system for the
flow of particles on an axis, namely its Boltzmann equation in the Vlasov approxi-
mation with no many-particle correlation, which describes the long waves in dense
gas of particles with short-range interaction potential. Then the associated Benney
type system of equations contains the convective terms in a form that is especially
convenient for describing turbulence [5]. Moreover, the mathematical model of inter-
acting particles on axis R we choose is such that the associated Benney type system of
equations is bi-Hamiltonian with an infinite hierarchy of polynomial conservation laws
in involution. The approach devised in the paper is applied effectively to constructing
Boltzmann-Vlasov and Benney type hydrodynamic equations describing interacting
to each other two-component particle flows.

2. BOLTZMANN EQUATION
AND THE ASSOCIATED TWO-COMPONENT MOMENT PROBLEM

2.1. Let us consider a quantum two-component dynamical system on the R axis
consisting of N := N, + N, € Z, identical spinless particles of two types with the
singular Hamiltonian

ﬁ:

a L N

m‘m
TMZ

SN

where o and § € R are real parameters, ki is the Planck’s constant (divided by 27) and
0(x —y), z,y € R, is the Dirac delta-function. Then Wigner’s transformation [3,7,12]

at the quasiclassical limit as A — 0 yields =0 H, ., where the classical Hamiltonian
function H, , : RN x RM — R has the form

:c y

j=1k=1

Here zj,y, € R, 1 < j < N,,1 <k < Ny, are the corresponding coordinates of
the system of two-component particles on the R axis. The Heisenberg commutator
for dynamical observables [3-5] becomes the standard canonical Hamiltonian bracket

{,-}, viz.

[a]% h:;O {',‘}a (23)
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in accordance with the Bohr principle. Therefore, in the phase space M = T*(RY)
the Hamiltonian equations take the following form:

dl'J/dt = {nyy,:cj} = (’9H/8p], dp],z/dt = {Hz,y;pj,m} = —8Hx,y/8m]—,
dyi/dt = {Hzy, yx} = OHy y/Opr,y, dpry/dt = {Hzy, pry}t = —0Hyy/Oyk,

where ¢t € R is an evolution parameter and (x;,p;) € T*(R), 1 < j < N, (yx,px) €
T*(R), 1 < k < N,,.

In view of the singularities in (2.2), equations (2.4) cannot in general be solvable
effectively for arbitrary Cauchy data and large N, N, € Z,. Therefore because of our
hydrodynamic interest in the motion of dynamical system (2.4), we further pass to
their statistical description [3], using the Boltzmann-Bogoliubov distribution function
F: (R* x R?) — D'(R? x R%;R%) defined by

(2.4)

N,

F(@,y,p2:pyit) = (O 8 (@ = 25()) 8 (02 = (1)), D 8 (4= yr(1)) § (0 — Py (1))-

=1 1

Z

<.
Eol
[

(2.5)
Here (2, y, pz, py) € R? x R? and functions (z;,p;.) € T*(R), 1 < j < Ng, (Yk,Pry) €
T*(R), 1 < k < N,, are solutions of Hamiltonian equations (2.4). The distribution
function (2.5) satisfies the standard Liouville-Hamilton equation

dF/dt = {F,H,,}, (2.6)

which will be studied in detail below.

2.2. Now we apply the averaging operator (-) to distribution function (2.5) assuming
no many-particle correlation over all initial states of (2.6). The averaging operation
on (2.6) results in kinetic Boltzmann-Vlasov equation [3,7] of the form

df fdt = ({F, Hyy}) := {{f, H}}, (2.7)

where f = (fi(x,p;t), fa(y,p;t))T = (F(x,p;t)) is the statistically averaged dis-
tribution function (2.5) and {{:,-}} is a new averaged Poisson bracket on the
infinite-dimensional functional space My C C*°(D(M);R,), which for a pair of
functionals v, u € D(My)) has the form [2,7]:

W= X [ o [ doilsepi) (grodr gradiyest)) (29

=1,2

and is called the Lie-Poisson bracket [2,8] and the operation “grad” is the standard
Euler variational derivative on D(My)). The Hamiltonian H € D(M)) in (2.7) is
given by

H:= /R dx /R dp%((np)ﬂf(w,p; t))+

(2.9)
+5/Rdx/deI /deyfl(sc,pm;t)fz(x,py;t)
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To derive (2.8) let us consider on the phase space M C T*(R)~R? the canonical
Poisson brackets {f,g} = 0pf0z9 — 0pg0sf, where f,g € D(M) are some smooth
functions. The space D(M) x D(M) of smooth functions on M has the natural Lie
algebra structure: G~ (D(M) x D(M);{-,-}) with respect to the naturally defined
canonical bracket {-,-}.

Let G* be the adjoint or dual space to G, i.e., the space of continuous linear
functionals on G. The space G is a Hilbert space with respect to the scalar product
defined by

(f.9) = / s / dplf(opit).ae i) (2.10)

for all f,g € G. Then G*~G follows from the Riesz theorem [12] and we note that
the above scalar product is invariant with respect to the Poisson bracket {-,-} in the
sense that

(f’ {gvh}) = <{f7g}’h) (211)

for all f,g,h € G. This structure enables us to determine the map grad : D(G*) —
G by means of the formula (grady(f),g) = d%'y(f + €9) |e=o for arbitrary f,g €
G*~@G. Consequently, grady(f) € G is completely equivalent to the variational Euler
derivative of the functional v € D(G*) at a point f € G*~G. For convenience we will
also denote grady(f) by Vy(f).

The canonical Hamiltonian structure {{-,-}} on the manifold G* can now be ex-
pressed via the well-known Lie-Poisson formula [2,8-10,13]

Hyvnty = AV, Vu(hH)), (2.12)

which coincides with (2.8). To reveal the essence of formula (2.7) we consider the
coadjoint action of the Lie algebra G on G* as follows: df/dt = ad*v,y(f)f, where
t € R is a real evolution parameter and grady(f) € G at f € G*. Then owing
to the invariance of the scalar product on G, the above vector field is equivalent to
the following Lax type representation on G: df/dt = {f, V~y(f)}, which in turn is
equivalent to (2.8) after an identification v = H € D(M(5)) C D(G).

It follows from (2.7) that the Hamiltonian function H given by (2.9) is a conserva-
tion law for Boltzmann-Vlasov equation (2.7), i.e, dH/dt = 0 for all t € R. Apart from
this conservation law, the dynamical system (2.7) possesses the following additional
invariant functionals on G*~@G :

N:j;/Rdx/defj(l“,p;t), PZj_Zl:z/Rdm/depfj(x,p;t)7 (2.13)

where N € Z is the whole number of particles and P € D(My)) is the total particles
momentum.

Below we shall show that the Boltzmann-Vlasov system (2.7) with Hamiltonian
(2.9) can be represented in the equivalent commutator form

df /dt = {f,gradH(f)}, (2.14)



On kinetic Boltzmann equations. . . 191

where f € D(M)~G*~G, and has an infinite involutive (with respect to the
Lie-Poisson bracket) hierarchy of conservation laws yielding the expected complete
integrability [8] of flow (2.14).

3. TWO COMPONENT BOLTZMANN-VLASOV TYPE KINETIC FLOW AND
ITS HYDRODYNAMIC COUNTERPART

3.1. Now one can easily compute the Boltzmann-Vlasov type equation related with
the Hamiltonian function (2.2):

dfj/dt = —pafje —Pyfiy + B©0,0).0fips (3.1)

where a(o,0y(21,22) = [dpe, [ dpay fr(21,00,) f2(Tey Dey), 21,22 € R, and [ :=
R R

(f1, f2)T € D(My)) is a positive valued vector function being naturally interpreted
as a two-component density function of particles in the phase space T*(R).

The set of kinetic equations (3.1) enables the description by means of the Benney
type momentum vector functions

a(m,n)(wlaxQ) ::/dpw1p;{i/dpw2p22f1<xlap11)f2<xw27p$2)? (32)
R R

for all m,n € Z, and 1,z € R! in the following Hamiltonian form

da(m,n) /dt = {I;[a a(m,n)}b‘(a)v (33)

generalizing that before discussed in [9]~7 making use of a completely different ap-
proach. Here the Hamiltonian function H € D(M, @2 y) is given by the expression

N 1
= [ doy [ dea(Glomo(or,22) +aa (o1,22))+ 85(e - a)age o, 2)}s (3:4)
R R

resulting after application the mapping
V(f) . D(Mf) — 'D(MZ&) (35)

defined by (3.2), where Mzz) := Ia( Z%;R?) and Lie-Poisson bracket (2.12) on
D(Msy). The equations (3.3) generalize the corresponding ones studied before for
the case of one-dimensional and one-component kinetic flows. This results can be
formulated as the following proposition.

Proposition 3.1. The two-component Boltzmann-Viasov kinetic system of equations
(3.1) is a Hamiltonian flow on the functional manifold D(Mgy) with respect to the
Lie-Poisson bracket (2.12) with Hamiltonian function (3.4). Moment mapping (3.5)
relates this Lie-Poisson structure to that on the functional manifold lg(Zi; R?), giving
rise to analog (3.3) of two-component Benney type moment equations.
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3.2. We now proceed to constructing the corresponding Benney type equations (3.3)
to the momentum hydrodynamic counterpart. To do this let us define in a natural
way the following new spatial variable

uj(z3y)
yi=Y_ o / dpf;(z,p), (3.6)
Jj=1,2 —0o0

where o; € Ria j = 1,2, are the corresponding sizes of the ball-like particles and wu :
R x R}F — R? is an Euler field type vector of hydrodynamic horizontal velocities of the
corresponding flow components. Thereby, we have defined yet another mapping of the
phase space D(My)) into the space D(My;p)), where M5y := C°(RxR;R* xR, )
is the corresponding hydrodynamic velocity-height space of our two interacting to each
other flow components possessing a freely moving surface:

Viwn) : D(Musny) — D(Mz2 1))- (3.7)

Mapping (3.7) iin a natural way induces a new Lie-Poisson structure {-, ~}9(u;h) on
D(My) with respect to which one can obtain the corresponding Hamiltonian hydro-
dynamic type equations

du/dt = {Ha u}@(u;h)v dh/dt = {ﬁ, U}G(u;h), (3-8)

where (u;h) € M,y and the Hamiltonian function H e D(M(y,v;n)) is naturally
obtained from expression (3.4) under the mapping (3.7), which is equivalent to the
following hydrodynamic counterpart:

h(z1) h(z2)
Umon) (L1, 22) = / dyruy*(z1,y) / dyaus (T2, yo) (3.9)
0 0

for all m,n € Zy and 1,22 € R. By means of momentum functions (3.9) one can
construct the corresponding generating vector function

a(\ ) (@1, 2) = Y A AT =

m,n€ly

h(z1) h(z2) (310)
dy1dy:

(A —ur(z1,y1)) (1 — ua (w2, y2))

0

for A, u € C. Expression (3.10) generalizes similar results constructed in [16] for a
one-component hydrodynamic flow. The one-component case was there thoroughly
analyzed from the Lie-algebraic point of view, and the related Lax type representation
was constructed there in the exact form. This problem, being important for analyzing
moment function (3.10), needs still for its solving some development of the usual Lie
algebraic scheme. By now, the results obtained above can be formulated as the
following final proposition.
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Proposition 3.2. The Hamiltonian two-fluid hydrodynamical system (3.8) is equiva-
lent to the infinite Benney type momentum equations (3.3), whose generating function
for its infinite hierarchy of conservation laws is related with the momentum expansions
(3.8).

A problem concerning the Lie-algebraic structure of the two-component hydrody-
namic flow with free surface (3.6) is still under question as its solution is strongly
depending on the algebraic structure of binary series like (3.10). This and related
topics we plan to analyze in detail elsewhere. A description of possible solutions to
(3.1) and (3.8) as well as their properties related with dry viscosity can be effectively
studied by means of the related Lax type representation for them whose existence
is still under search. We only mention here that these new types of two-component
Boltzmann-Vlasov type kinetic equations considered above are in some sense restric-
tive concerning real many interparticle interaction potentials, and there is great practi-
cal interest in constructing suitable two-component coupled kinetic Boltzmann-Vlasov
type equations for one and two particle distribution functions using the analytic and
algebraic methods devised before in [10-16].
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