48 research outputs found

    Exact solutions of Brans-Dicke wormholes in the presence of matter

    Full text link
    A fundamental ingredient in wormhole physics is the presence of exotic matter, which involves the violation of the null energy condition. Although a plethora of wormhole solutions have been explored in the literature, it is useful to find geometries that minimize the usage of exotic matter. In this work, we find exact wormhole solutions in Brans-Dicke theory where the normal matter threading the wormhole satisfies the null energy condition throughout the geometry. Thus, the latter implies that it is the effective stress-energy tensor containing the scalar field, that plays the role of exotic matter, that is responsible for sustaining the wormhole geometry. More specifically, we consider a zero redshift function and a particular choice for the scalar field and determine the remaining quantities, namely, the stress-energy tensor components and the shape function. The solution found is not asymptotically flat, so that this interior wormhole spacetime needs to be matched to an exterior vacuum solution.Comment: 7 pages, 3 figure

    Wormhole geometries supported by a nonminimal curvature-matter coupling

    Full text link
    Wormhole geometries in curvature-matter coupled modified gravity are explored, by considering an explicit nonminimal coupling between an arbitrary function of the scalar curvature, R, and the Lagrangian density of matter. It is the effective stress-energy tensor containing the coupling between matter and the higher order curvature derivatives that is responsible for the null energy condition violation, and consequently for supporting the respective wormhole geometries. The general restrictions imposed by the null energy condition violation are presented in the presence of a nonminimal R-matter coupling. Furthermore, obtaining exact solutions to the gravitational field equations is extremely difficult due to the nonlinearity of the equations, although the problem is mathematically well-defined. Thus, we outline several approaches for finding wormhole solutions, and deduce an exact solution by considering a linear R nonmiminal curvature-matter coupling and by considering an explicit monotonically decreasing function for the energy density. Although it is difficult to find exact solutions of matter threading the wormhole satisfying the energy conditions at the throat, an exact solution is found where the nonminimal coupling does indeed minimize the violation of the null energy condition of normal matter at the throat.Comment: 8 pages, 3 figures. V2: 9 pages, error and typos corrected; discussion and references added; to appear in PR

    Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory

    Get PDF
    We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory.Comment: 9 pages, 6 figures; v2: improved versio

    Ohm's Law for Plasma in General Relativity and Cowling's Theorem

    Full text link
    The general-relativistic Ohm's law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna \& Camenzind (1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω\omega of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω\omega exceeds 2.7×1017(n/σ)s12.7\times 10^{17} (n/\sigma) \textrm{s}^{-1} (nn is the number density of the charged particles, σ\sigma is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling's antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.Comment: Accepted for publication in Astrophysics & Space Scienc

    Classical and semi-classical energy conditions

    Full text link
    The standard energy conditions of classical general relativity are (mostly) linear in the stress-energy tensor, and have clear physical interpretations in terms of geodesic focussing, but suffer the significant drawback that they are often violated by semi-classical quantum effects. In contrast, it is possible to develop non-standard energy conditions that are intrinsically non-linear in the stress-energy tensor, and which exhibit much better well-controlled behaviour when semi-classical quantum effects are introduced, at the cost of a less direct applicability to geodesic focussing. In this article we will first review the standard energy conditions and their various limitations. (Including the connection to the Hawking--Ellis type I, II, III, and IV classification of stress-energy tensors). We shall then turn to the averaged, nonlinear, and semi-classical energy conditions, and see how much can be done once semi-classical quantum effects are included.Comment: V1: 25 pages. Draft chapter, on which the related chapter of the book "Wormholes, Warp Drives and Energy Conditions" (to be published by Springer), will be based. V2: typos fixed. V3: small typo fixe

    Generic thin-shell gravastars

    Full text link
    We construct generic spherically symmetric thin-shell gravastars by using the cut-and-paste procedure. We take considerable effort to make the analysis as general and unified as practicable; investigating both the internal physics of the transition layer and its interaction with "external forces" arising due to interactions between the transition layer and the bulk spacetime. Furthermore, we discuss both the dynamic and static situations. In particular, we consider "bounded excursion" dynamical configurations, and probe the stability of static configurations. For gravastars there is always a particularly compelling configuration in which the surface energy density is zero, while surface tension is nonzero.Comment: V1: 39 pages, 9 figures; V2: 40 pages, 9 figures. References added, some discussion added, some typos fixed. Identical to published version. arXiv admin note: text overlap with arXiv:1112.205

    On the non-attractive character of gravity in f(R) theories

    Get PDF
    Raychaudhuri equation is found provided that particular energy conditions are assumed and regardless the considered solution of the Einstein's equations. This fact is usually interpreted as a manifestation of the attractive character of gravity. Nevertheless, a positive contribution to Raychaudhuri equation from space-time geometry should occur since this is the case in an accelerated expanding Robertson-Walker model for congruences followed by fundamental observers. Modified gravity theories provide the possibility of a positive contribution although the standard energy conditions are assumed. We address this important issue in the context of f(R) theories, deriving explicit upper bounds for the contribution of space-time geometry to the Raychaudhuri equation. Then, we examine the parameter constraints for some paradigmatic f(R) models in order to ensure a positive contribution to this equation. Furthermore, we consider the implications of these upper bounds in the equivalent formulation of f(R) theories as a Brans-Dicke model

    Novel genes and sex differences in COVID-19 severity

    Get PDF
    [EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
    corecore