276 research outputs found
Cfd investigation of spacer-filled channels for membrane distillation
The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ranging from ~200 to ~800. A good qualitative agreement between simulations and experiments can be observed for the areal distribution of the normalized heat transfer coefficient. Trends of the average heat transfer coefficient are reported as functions of Re for the geometries investigated, thus providing the basis for CFD-based correlations to be used in higher-scale process models
Hydrodynamics and mass transfer in straight fiber bundles with non-uniform porosity
The present study investigates the effects of non-uniformity in a bundle's porosity by considering a model channel made up of "dense" (low porosity) and "loose" (high porosity) regions. In a first, simplified, approach these regions are treated as non-interacting porous media and previously obtained computational results are used for the Darcy permeability and the Sherwood number. In a second, and more complete, approach 3-D CFD simulations are conducted for a checkerboard arrangement of alternately "dense" and "loose" regions with square-arrayed fibers, accounting for entry effects and for interactions between regions. Non-uniformity causes a significant increase of the permeability and a strong reduction of the Sherwood number. These effects are larger, approaching those obtained for non-interacting regions, if the regions' length scale is large. The attainment of fully developed conditions is greatly shifted forward in non-uniform bundles and the mass transfer development length may largely exceed the physical length of most hollow-fiber devices
A pilot-plant for the selective recovery of magnesium and calcium from waste brines
The problem of brines disposal has raised great interest towards new strategies for their valorisation through the recovery of minerals or energy. As an example, the spent brine from ion exchange resins regeneration is often discharged into rivers or lakes, thus impacting on the process sustainability. However, such brines can be effectively reconcentrated, after removal of bivalent cations, and reused for the resins regeneration. This work focuses on developing and testing a pilot plant for selective recovery of magnesium and calcium from spent brines exploiting a novel proprietary crystallization unit. This is part of a larger treatment chain for the complete regeneration of the brine, developed within the EU-funded ZERO BRINE project. The pilot crystallizer was tested with the retentate of the nanofiltration unit processing the spent brine from the industrial water production plant of Evides Industriewater B.V. (Rotterdam, The Netherlands). Magnesium and calcium hydroxide were selectively precipitated by adding alkaline solution in two consecutive steps and controlling reaction pH. Performance was assessed in terms of recovery efficiency and purity of produced crystals, observing in most investigated cases a recovery of about 100% and 97% and a purity above 90% and 96%, for magnesium and calcium hydroxide, respectively
Influence of bundle porosity on shell-side hydrodynamics and mass transfer in regular fiber arrays: A computational study
CFD predictions of the effects of a fiber bundle porosity on shell-side hydrodynamics and mass transfer under conditions of steady laminar flow were obtained. Fluid was assumed to flow around regular hexag-onal or square arrays of cylindrical fibers of different pitch to diameter ratios, yielding bundle porosities ranging from the theoretical minimum up to similar to 1. A large number of axial, transverse and mixed flow combinations were simulated by letting the axial and transverse flow Reynolds numbers and the trans-verse flow attack angle vary. Both fully developed and developing conditions (entrance effects) were con-sidered. The continuity and momentum equations, along with a transport equation for the concentra-tion of a high-Schmidt number solute, were solved by a finite volume CFD code. Fully developed condi-tions were simulated by the well-established "unit cell" approach, in which the computational domain is two-dimensional and includes a single fiber with the associated fluid, periodic boundary conditions are imposed between all opposite sides and compensative terms are introduced to account for large-scale longitudinal or transversal gradients. Developing flow was studied by using a fully three-dimensional computational domain. Predictions were validated against experimental, computational and analytic liter-ature results. The simulations showed that lattices with different porosities exhibit a qualitatively similar behavior, but differ significantly in important quantities such as the Darcy permeability, the Sherwood number and the hydrodynamic and mass transfer development length
Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice
Obesity has a major socio-economic health impact. There are profound sex differences in adipose tissue deposition and obesity-related conditions. The underlying mechanisms driving sexual dimorphism in obesity and its associated metabolic disorders remain unclear. Histone variant macroH2A1.1 is a candidate epigenetic mechanism linking environmental and dietary factors to obesity. Here, we used a mouse model genetically depleted of macroH2A1.1 to investigate its potential epigenetic role in sex dimorphic obesity, metabolic disturbances and gut dysbiosis. Whole body macroH2A1 knockout (KO) mice, generated with the Cre/loxP technology, and their control littermates were fed a high fat diet containing 60% of energy derived from fat. The diet was administered for three months starting from 10 to 12 weeks of age. We evaluated the progression in body weight, the food intake, and the tolerance to glucose by means of a glucose tolerance test. Gut microbiota composition, visceral adipose and liver tissue morphology were assessed. In addition, adipogenic gene expression patterns were evaluated in the visceral adipose tissue. Female KO mice for macroH2A1.1 had a more pronounced weight gain induced by high fat diet compared to their littermates, while the increase in body weight in male mice was similar in the two genotypes. Food intake was generally increased upon KO and decreased by high fat diet in both sexes, with the exception of KO females fed a high fat diet that displayed the same food intake of their littermates. In glucose tolerance tests, glucose levels were significantly elevated upon high fat diet in female KO compared to a standard diet, while this effect was absent in male KO. There were no differences in hepatic histology. Upon a high fat diet, in female adipocyte cross-sectional area was larger in KO compared to littermates: activation of proadipogenic genes (ACACB, AGT, ANGPT2, FASN, RETN, SLC2A4) and downregulation of antiadipogenic genes (AXIN1, E2F1, EGR2, JUN, SIRT1, SIRT2, UCP1, CCND1, CDKN1A, CDKN1B, EGR2) was detected. Gut microbiota profiling showed increase in Firmicutes and a decrease in Bacteroidetes in females, but not males, macroH2A1.1 KO mice. MacroH2A1.1 KO mice display sexual dimorphism in high fat diet-induced obesity and in gut dysbiosis, and may represent a useful model to investigate epigenetic and metabolic differences associated to the development of obesity-associated pathological conditions in males and female
Antimicrobial peptide capsids of de novo design
The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact
Pseudo-dipeptide bearing α,α-difluoromethyl ketone moiety as electrophilic warhead with activity against coronaviruses
The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The abil-ity of the newly synthesized compound to inhibit viral replication was evaluated by a viral cyto-pathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coro-naviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 μM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 μM, 307 ± 11.63 μM, and 174 ± 7.6 μM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose
Pseudo-dipeptide bearing α,α-difluoromethyl ketone moiety as electrophilic warhead with activity against coronaviruses
The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose
- …