26 research outputs found

    A Dominant X-Linked QTL Regulating Pubertal Timing in Mice Found by Whole Genome Scanning and Modified Interval-Specific Congenic Strain Analysis

    Get PDF
    BACKGROUND: Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of approximately 2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs). CONCLUSIONS/SIGNIFICANCE: Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice

    Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications

    Get PDF
    Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Paternal origin of the denovo deleted chromosome 4 in wolf-Hirschborn syndrome

    No full text
    The parental origin of the de novo deleted chromosome 4 was studied in five cases of Wolf-Hirschhorn syndrome using polymorphic probes mapping in the 4p16.3 region. In all the patients the deleted chromosome was found to be of paternal origin and these results, together with similar ones obtained by another group, make the preferential paternal origin of the de novo chromosome 4 deletion highly significant
    corecore