395 research outputs found
Recommended from our members
Datocracy
Datocracy is a compound neologism that embraces transhistorical liberations and reconfigurations of data, in its multiple perceptual-linguistic forms, into new value relations and systems of governance, democratic or otherwise. Datocracy evolves from the often-violent separation of data from its habitual matrices, by virtue of dispositifs, or apparatuses, as defined by Michel Foucault and elaborated by Gilles Deleuze. This paper examines material examples of the functioning of such dispositifs through Georges Bataille, Walter Benjamin, François Rabelais (through Mikhail Bakhtin), and William Burroughs. These examples demonstrate how emancipated data is readily recuperated into new relations of governance, as liberatory socio-political tools (or apparatuses), or vehicles of tyranny. In its passage between liberation and recuperation, in its state of utterance, perhaps, data experiences a protosemantic moment, a pre-definitional state, which offers the promise of a momentary escape from, or rather within, value relations
Integral representations for correlation functions of the XXZ chain at finite temperature
We derive a novel multiple integral representation for a generating function
of the \s^z-\s^z correlation functions of the spin-\2 XXZ chain at finite
temperature and finite, longitudinal magnetic field. Our work combines
algebraic Bethe ansatz techniques for the calculation of matrix elements with
the quantum transfer matrix approach to thermodynamics.Comment: 33 pages, 2 figures, v2: 2 typos corrected, 1 figure adde
Finite temperature density matrix and two-point correlations in the antiferromagnetic XXZ chain
We derive finite temperature versions of integral formulae for the two-point
correlation functions in the antiferromagnetic XXZ chain. The derivation is
based on the summation of density matrix elements characterizing a finite chain
segment of length . On this occasion we also supply a proof of the basic
integral formula for the density matrix presented in an earlier publication.Comment: 35 page
Algebraic Bethe ansatz for the gl(12) generalized model II: the three gradings
The algebraic Bethe ansatz can be performed rather abstractly for whole
classes of models sharing the same -matrix, the only prerequisite being the
existence of an appropriate pseudo vacuum state. Here we perform the algebraic
Bethe ansatz for all models with , rational, gl(12)-invariant
-matrix and all three possibilities of choosing the grading. Our Bethe
ansatz solution applies, for instance, to the supersymmetric t-J model, the
supersymmetric model and a number of interesting impurity models. It may be
extended to obtain the quantum transfer matrix spectrum for this class of
models. The properties of a specific model enter the Bethe ansatz solution
(i.e. the expression for the transfer matrix eigenvalue and the Bethe ansatz
equations) through the three pseudo vacuum eigenvalues of the diagonal elements
of the monodromy matrix which in this context are called the parameters of the
model.Comment: paragraph added in section 3, reference added, version to appear in
J.Phys.
Form factor expansion for thermal correlators
We consider finite temperature correlation functions in massive integrable
Quantum Field Theory. Using a regularization by putting the system in finite
volume, we develop a novel approach (based on multi-dimensional residues) to
the form factor expansion for thermal correlators. The first few terms are
obtained explicitly in theories with diagonal scattering. We also discuss the
validity of the LeClair-Mussardo proposal.Comment: 41 pages; v2: minor corrections, v3: minor correction
Sub-dekahertz ultraviolet spectroscopy of 199Hg+
Using a laser that is frequency-locked to a Fabry-Perot etalon of high
finesse and stability, we probe the 5d10 6s 2S_1/2 (F=0) - 5d9 6s 2D_5/2 (F=2)
Delta-m_F = 0 electric-quadrupole transition of a single laser-cooled 199Hg+
ion stored in a cryogenic radio-frequency ion trap. We observe
Fourier-transform limited linewidths as narrow as 6.7 Hz at 282 nm (1.06 X
10^15 Hz), yielding a line Q = 1.6 X 10^14. We perform a preliminary
measurement of the 5d9 6s2 2D_5/2 electric-quadrupole shift due to interaction
with the static fields of the trap, and discuss the implications for future
trapped-ion optical frequency standards.Comment: 4 pages, 4 figures, submitted for publicatio
Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra
Using Kohn-Sham wave functions and their energy levels obtained by
density-functional-theory total-energy calculations, the electronic structure
of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable
hollow-site structure formed when adsorption takes place at low temperature,
and the stable substitutional structure appearing when the substrate is heated
thereafter above ca. 180K or when adsorption takes place at room temperature
from the beginning. The experimentally obtained two-dimensional band structures
of the surface states or resonances are well reproduced by the calculations.
With the help of charge density maps it is found that in both phases, two
pronounced bands appear as the result of a characteristic coupling between the
valence-state band of a free c(2x2)-Na monolayer and the
surface-state/resonance band of the Al surfaces; that is, the clean (001)
surface for the metastable phase and the unstable, reconstructed "vacancy"
structure for the stable phase. The higher-lying band, being Na-derived,
remains metallic for the unstable phase, whereas it lies completely above the
Fermi level for the stable phase, leading to the formation of a
surface-state/resonance band-structure resembling the bulk band-structure of an
ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251
(1998). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Model-Based Methods for Assessment, Learning, and Instruction: Innovative Educational Technology at Florida State University
Abstract In this chapter, we describe our research and development efforts relating to eliciting, representing, and analyzing how individuals and small groups conceptualize complex problems. The methods described herein have all been devel-oped and are in various states of being validated. In addition, the methods we describe have been automated and most have been integrated in an online model-based set of tools called HIMATT (Highly Interactive Model-based Assessment Tools and Technologies; available for research purposes a
- …