109 research outputs found

    Nature of S\bm{S}-wave NN\bm{NN} interaction and dibaryon production at nucleonic resonance thresholds

    Full text link
    Phase shifts and inelasticity parameters for NNNN scattering in the partial-wave channels 3S1{}^3S_1--3D1{}^3D_1 and 1S0{}^1S_0 at energies TlabT_{\rm lab} from zero to about 1 GeV are described within a unified NNNN potential model assuming the formation of isoscalar and isovector dibaryon resonances near the NN(1440)NN^*(1440) threshold. Evidence for these near-threshold resonances is actually found in the recent WASA experiments on single- and double-pion production in NNNN collisions. There, the excitation of the Roper resonance N(1440)N^*(1440) exhibits a structure in the energy dependence of the total cross section, which corresponds to the formation of dibaryon states with I(Jπ)=0(1+)I(J^\pi)=0(1^+) and 1(0+)1(0^+) at the NN(1440)NN^*(1440) threshold. These two SS-wave dibaryon resonances may provide a new insight into the nature of the strong NNNN interaction at low and intermediate energies.Comment: 10 pages, 8 figure

    Line shape analysis of the Kβ\beta transition in muonic hydrogen

    Full text link
    The Kβ\beta transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3p3p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian approach.Comment: 22 pages, 21 figure

    The properties of the three-nucleon system with the dressed-bag model for nn interaction. I: New scalar three-body force

    Full text link
    A multi-component formalism is developed to describe three-body systems with nonstatic pairwise interactions and non-nucleonic degrees of freedom. The dressed-bag model for NNNN interaction based on the formation of an intermediate six-quark bag dressed by a σ\sigma-field is applied to the 3N3N system, where it results in a new three-body force between the six-quark bag and a third nucleon. Concise variational calculations of 3N3N bound states are carried out in the dressed-bag model including the new three-body force. It is shown that this three-body force gives at least half the 3N3N total binding energy, while the weight of non-nucleonic components in the 3^3H and 3^3He wavefunctions can exceed 10%. The new force model provides a very good description of 3N3N bound states with a reasonable magnitude of the σNN\sigma NN coupling constant. The model can serve as a natural bridge between dynamical description of few-nucleon systems and the very successful Walecka approach to heavy nuclei and nuclear matter.Comment: 26 pages, Latex, 7 figure

    Techniques of disinformation: constructing and communicating "soft facts" after terrorism

    Get PDF
    Informed by social media data collected following four terror attacks in the UK in 2017, this article delineates a series of “techniques of disinformation” used by different actors to try and influence how the events were publicly defined and understood. By studying the causes and consequences of misleading information following terror attacks, the article contributes empirically to the neglected topic of social reactions to terrorism. It also advances scholarship on the workings of disinforming communications, by focusing on a domain other than political elections, which has been the empirical focus for most studies of disinformation to date. Theoretically, the analysis is framed by drawing an analogy with Gresham Sykes and David Matza's (1957) account of the role of “techniques of neutralization” originally published in the American Sociological Review. The connection being that where they studied deviant behaviour, a similar analytic lens can usefully be applied to disinformation cast as “deviant” information

    Improved dd+4^4He potentials by inversion, the tensor force and validity of the double folding model

    Full text link
    Improved potential solutions are presented for the inverse scattering problem for dd+4^4He data. The input for the inversions includes both the data of recent phase shift analyses and phase shifts from RGM coupled-channel calculations based on the NN Minnesota force. The combined calculations provide a more reliable estimate of the odd-even splitting of the potentials than previously found, suggesting a rather moderate role for this splitting in deuteron-nucleus scattering generally. The approximate parity-independence of the deuteron optical potentials is shown to arise from the nontrivial interference between antisymmetrization and channel coupling to the deuteron breakup channels. A further comparison of the empirical potentials established here and the double folding potential derived from the M3Y effective NN force (with the appropriate normalisation factor) reveals strong similarities. This result supports the application of the double folding model, combined with a small Majorana component, to the description even of such a loosely bound projectile as the deuteron. In turn, support is given for the application of iterative-perturbative inversion in combination with the double folding model to study fine details of the nucleus-nucleus potential. A dd-4^4He tensor potential is also derived to reproduce correctly the negative 6^6Li quadrupole moment and the D-state asymptotic constant.Comment: 22 pages, 12 figures, in Revte

    Moscow-type NN-potentials and three-nucleon bound states

    Get PDF
    A detailed description of Moscow-type (M-type) potential models for the NN interaction is given. The microscopic foundation of these models, which appear as a consequence of the composite quark structure of nucleons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound or bag-like six-quark states, strongly coupled to the NN channel, are eliminated from the complete multiquark wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introducing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local repulsive core (M-type models), is generated. The predictions of these interaction models for 3N systems are analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system with the new versions of the Moscow NN potential describing also the higher even partial waves is presented. Large deviations from conventional NN force models are found for the momentum distribution in the high momentum region. In particular, the Coulomb displacement energy for nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.

    The PlcR Virulence Regulon of Bacillus cereus

    Get PDF
    PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the reference strain and its isogenic Δ-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection (bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient adaptation of B. cereus to its host environment

    Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides

    Get PDF
    The transcriptional regulator PlcR and its cognate cell–cell signalling peptide PapR form a quorum-sensing system that controls the expression of extra-cellular virulence factors in various species of the Bacillus cereus group. PlcR and PapR alleles are clustered into four groups defining four pherotypes. However, the molecular basis for group specificity remains elusive, largely because the biologically relevant PapR form is not known. Here, we show that the in vivo active form of PapR is the C-terminal heptapeptide of the precursor, and not the pentapeptide, as previously suggested. Combining genetic complementation, anisotropy assays and structural analysis we provide a detailed functional and structural explanation for the group specificity of the PlcR–PapR quorum-sensing system. We further show that the C-terminal helix of the PlcR regulatory domain, specifically the 278 residue, in conjunction with the N-terminal residues of the PapR heptapeptide determines this system specificity. Variability in the specificity-encoding regions of plcR and papR genes suggests that selection and evolution of quorum-sensing systems play a major role in adaptation and ecology of Bacilli
    corecore