8,545 research outputs found

    Nonlocal Cooper pair Splitting in a pSn Junction

    Get PDF
    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor - superconductor - n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the bandstructure of the electrodes. The pSn junction is modeled by the Bogoliubov-de Gennes equations and an extension of the Blonder-Tinkham-Klapwijk theory beyond the Andreev approximation. Despite a large momentum mismatch, the CAR current is predicted to be large. The proposed straightforward experimental design and the 100% degree of pureness of the nonlocal current open the way to pSn structures as high quality sources of entanglement

    Estimation of the particle-antiparticle correlation effect for pion production in heavy ion collisions

    Full text link
    Estimation of the back-to-back pi-pi correlations arising due to evolution of the pionic field in the course of pion production process is given for central heavy nucleus collisions at moderate energies.Comment: 6 LaTeX pages + 5 ps figure

    Crossed Andreev reflection in diffusive contacts

    Full text link
    Crossed Andreev reflection in multiterminal structures in the diffusive regime is addressed within the quasiclassical Keldysh-Usadel formalism. The elastic cotunneling and crossed Andreev reflection of quasiparticles give nonlocal currents and voltages (depending on the actual biasing of the devices) by virtue of the induced proximity effect in the normal metal electrodes. The magnitude of the nonlocal processes is found to scale with the square of the barrier transparency and to decay exponentially with interface spacing. Nonlocal cotunneling and crossed Andreev conductances are found to contribute equally to the nonlocal current, which is of relevance to the use of normal metal-superconducting heterostructures as sources of entanglement

    Higher Order Bose-Einstein Correlations test the Gaussian Density Matrix Approach

    Full text link
    A multiparticle system produced by a large number of independent sources is described by a gaussian density matrix W. All theoretical approach to Bose-Einstein Correlatios Cn in high energy physics use this form for W. One of the most salient consequences of this form is the fact that all higher order (n>2) moments of the current distribution can be expressed in terms of the first two. We test this property by comparing the data on C2(Q^2), C3(Q^2) and C4(Q^2) from pion-p and K-p reactions at 250 GeV/c with the predictions of a general quantum statistical space-time approach. Even a simplified version of such approach can account for the data. Previous attempts along these lines, which did not use the space-time approach, met with difficulties.Comment: 17 pages (including one Table) and 2 figures. To appear in Physics Letters B (PLB 13397

    Two-photon correlations as a sign of sharp transition in quark-gluon plasma

    Get PDF
    The photon production arising due to time variation of the medium has been considered. The Hamilton formalism for photons in time-variable medium (plasma) has been developed with application to inclusive photon production. The results have been used for calculation of the photon production in the course of transition from quark-gluon phase to hadronic phase in relativistic heavy ion collisions. The relative strength of the effect as well as specific two- photon correlations have been evaluated. It has been demonstrated that the opposite side two-photon correlations are indicative of the sharp transition from the quark-gluon phase to hadrons.Comment: 23 pages, 2 figure

    Fine structure of the local pseudogap and Fano effect for superconducting electrons near a zigzag graphene edge

    Full text link
    Motivated by recent scanning tunneling experiments on zigzag-terminated graphene this paper investigates an interplay of evanescent and extended quasiparticle states in the local density of states (LDOS) near a zigzag edge using the Green's function of the Dirac equation. A model system is considered where the local electronic structure near the edge influences transport of both normal and superconducting electrons via a Fano resonance. In particular, the temperature enhancement of the critical Josephson current and 0-pi transitions are predicted.Comment: 5 pages, 5 figures, to be published in Phys. Rev.

    Andreev reflections on Y1-xCaxBa2Cu3O7-delta evidence for an unusual proximity effect

    Full text link
    We have measured Andreev reflections between an Au tip and Y_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7 - \delta} thin films in the in-plane orientation. The conductance spectra are best fitted with a pair potential having the "d_{x^{2}-y^{2}+is" symmetry. We find that the amplitude of the "is" component is enhanced as the contact transparency is increased. This is an indication for an unusual proximity effect that modifies the pair potential in the superconductor near the surface with the normal metal.Comment: 4 pages, 4 figure
    • …
    corecore