2,782 research outputs found

    Measurement of \psip Radiative Decays

    Full text link
    Using 14 million psi(2S) events accumulated at the BESII detector, we report first measurements of branching fractions or upper limits for psi(2S) decays into gamma ppbar, gamma 2(pi^+pi^-), gamma K_s K^-pi^++c.c., gamma K^+ K^- pi^+pi^-, gamma K^{*0} K^- pi^+ +c.c., gamma K^{*0}\bar K^{*0}, gamma pi^+pi^- p pbar, gamma 2(K^+K^-), gamma 3(pi^+pi^-), and gamma 2(pi^+pi^-)K^+K^- with the invariant mass of hadrons below 2.9GeV/c^2. We also report branching fractions of psi(2S) decays into 2(pi^+pi^-) pi^0, omega pi^+pi^-, omega f_2(1270), b_1^\pm pi^\mp, and pi^0 2(pi^+pi^-) K^+K^-.Comment: 5 pages, 4 figure

    Measurements of J/ψJ/\psi and ψ(2S)\psi(2S) decays into ΛΛˉπ0\Lambda \bar{\Lambda}\pi^0 and ΛΛˉη\Lambda \bar{\Lambda}\eta

    Full text link
    Using 58 million J/ψJ/\psi and 14 million ψ(2S)\psi(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/ψJ/\psi and ψ(2S)ΛΛˉπ0\psi(2S) \to \Lambda \bar{\Lambda}\pi^0 and ΛΛˉη\Lambda \bar{\Lambda}\eta are measured. For the isospin violating decays, the upper limits are determined to be B(J/ψΛΛˉπ0)<6.4×105{\cal B}(J/\psi \to \Lambda \bar{\Lambda}\pi^0)<6.4\times 10^{-5} and B(ψ(2S)ΛΛˉπ0)<4.9×105{\cal B}(\psi(2S) \to \Lambda \bar{\Lambda}\pi^0)<4.9\times 10^{-5} at the 90% confidence level. The isospin conserving process J/ψΛΛˉηJ/\psi \to \Lambda \bar{\Lambda}\eta is observed for the first time, and its branching fraction is measured to be B(J/ψΛΛˉη)=(2.62±0.60±0.44)×104{\cal B}(J/\psi \to \Lambda \bar{\Lambda}\eta)=(2.62\pm 0.60\pm 0.44)\times 10^{-4}, where the first error is statistical and the second one is systematic. No ΛΛˉη\Lambda \bar{\Lambda}\eta signal is observed in ψ(2S)\psi(2S) decays, and B(ψ(2S)ΛΛˉη)<1.2×104{\cal B}(\psi(2S) \to \Lambda \bar{\Lambda}\eta)<1.2\times 10^{-4} is set at the 90% confidence level. Branching fractions of J/ψJ/\psi decays into Σ+πbarΛ\Sigma^+ \pi^- bar{\Lambda} and Σˉπ+Λ\bar{\Sigma}^- \pi^+ \Lambda are also reported, and the sum of these branching fractions is determined to be B(J/ψΣ+πΛˉ+c.c.)=(1.52±0.08±0.16)×103{\cal B}(J/\psi \to \Sigma^+\pi^- \bar{\Lambda} + c.c.)=(1.52\pm 0.08\pm 0.16)\times 10^{-3}.Comment: 7 pages, 10 figures. Phys.Rev.D comments considere

    A Unified Approach to the Classical Statistical Analysis of Small Signals

    Get PDF
    We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with published version. A few small changes, plus the two substantive changes we made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C). It was inconsistent with our actual definition in Sec. VI. 2) "Note added in proof" at end of the Conclusio

    Observation of Y(2175) in J/ψηϕf0(980)J/\psi\to \eta\phi f_0(980)

    Full text link
    The decays of J/ψηϕf0(980)(ηγγ,ϕK+K,f0(980)π+π)J/\psi\to \eta\phi f_0(980) (\eta\to \gamma\gamma, \phi \to K^+K^-, f_0(980)\to\pi^+\pi^-) are analyzed using a sample of 5.8×1075.8 \times 10^{7} J/ψJ/\psi events collected with the BESII detector at the Beijing Electron-Positron Collider (BEPC). A structure at around 2.182.18 GeV/c2c^2 with about 5σ5\sigma significance is observed in the ϕf0(980)\phi f_0(980) invariant mass spectrum. A fit with a Breit-Wigner function gives the peak mass and width of m=2.186±0.010(stat)±0.006(syst)m=2.186\pm 0.010 (stat)\pm 0.006 (syst) GeV/c2c^2 and Γ=0.065±0.023(stat)±0.017(syst)\Gamma=0.065\pm 0.023 (stat)\pm 0.017 (syst) GeV/c2c^2, respectively, that are consistent with those of Y(2175), observed by the BABAR collaboration in the initial-state radiation (ISR) process e+eγISRϕf0(980)e^+e^-\to\gamma_{ISR}\phi f_0(980). The production branching ratio is determined to be Br(J/ψηY(2175))Br(Y(2175)ϕf0(980))Br(f0(980)π+π)=(3.23±0.75(stat)±0.73(syst))×104Br(J/\psi\to\eta Y(2175))\cdot Br(Y(2175)\to\phi f_0(980))\cdot Br(f_0(980)\to\pi^+\pi^-)=(3.23\pm 0.75 (stat)\pm0.73 (syst))\times 10^{-4}, assuming that the Y(2175) is a 11^{--} state.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let

    Partial wave analysis of J/psi to p pbar pi0

    Full text link
    Using a sample of 58 million J/ψJ/\psi events collected with the BESII detector at the BEPC, more than 100,000 J/ψppˉπ0J/\psi \to p\bar p \pi^0 events are selected, and a detailed partial wave analysis is performed. The branching fraction is determined to be Br(J/ψppˉπ0)=(1.33±0.02±0.11)×103Br(J/\psi \to p \bar p \pi^0)=(1.33 \pm 0.02 \pm 0.11) \times 10^{-3}. A long-sought `missing' NN^*, first observed in J/ψpnˉπJ/\psi \to p \bar n \pi^-, is observed in this decay too, with mass and width of 20404+3±252040_{-4}^{+3}\pm 25 MeV/c2^2 and 2308+8±52230_{-8}^{+8}\pm 52 MeV/c2^2, respectively. Its spin-parity favors 3/2+{3/2}^+. The masses, widths, and spin-parities of other NN^* states are obtained as well.Comment: Add one author nam

    Observation of an anomalous line shape of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} mass spectrum near the ppˉp\bar{p} mass threshold in J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-}

    Get PDF
    Using 1.09×1091.09\times10^{9} J/ψJ/\psi events collected by the BESIII experiment in 2012, we study the J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-} process and observe a significant abrupt change in the slope of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} invariant mass distribution at the proton-antiproton (ppˉp\bar{p}) mass threshold. We use two models to characterize the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} line shape around 1.85 GeV/c21.85~\text{GeV}/c^{2}: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV/c21.85~\text{GeV}/c^{2} with strong couplings to ppˉp\bar{p} final states or a narrow state just below the ppˉp\bar{p} mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a ppˉp\bar{p} molecule-like state or bound state with greater than 7σ7\sigma significance

    Study of J/ψJ/\psi and ψ(3686)Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψΣ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Higher-order multipole amplitude measurement in ψ(2S)γχc2\psi(2S)\to\gamma\chi_{c2}

    Full text link
    Using 106×106106\times10^6 ψ(2S)\psi(2S) events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ(2S)γχc2γππ/γKK\psi(2S)\to\gamma\chi_{c2}\to\gamma\pi\pi/\gamma KK are measured. A fit to the χc2\chi_{c2} production and decay angular distributions yields M2=0.046±0.010±0.013M2=0.046\pm0.010\pm0.013 and E3=0.015±0.008±0.018E3=0.015\pm0.008\pm0.018, where the first errors are statistical and the second systematic. Here M2M2 denotes the normalized magnetic quadrupole amplitude and E3E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2M2 signal with 4.4σ4.4\sigma statistical significance and is consistent with the charm quark having no anomalous magnetic moment.Comment: 14 pages, 4 figure

    Study of J/ψppˉJ/\psi\to p\bar{p} and J/ψnnˉJ/\psi\to n\bar{n}

    Get PDF
    The decays J/ψppˉJ/\psi\to p\bar{p} and J/ψnnˉJ/\psi\to n\bar{n} have been investigated with a sample of 225.2 million J/ψJ/\psi events collected with the BESIII detector at the BEPCII e+ee^+e^- collider. The branching fractions are determined to be B(J/ψppˉ)=(2.112±0.004±0.031)×103\mathcal{B}(J/\psi\to p\bar{p})=(2.112\pm0.004\pm0.031)\times10^{-3} and B(J/ψnnˉ)=(2.07±0.01±0.17)×103\mathcal{B}(J/\psi\to n\bar{n})=(2.07\pm0.01\pm0.17)\times10^{-3}. Distributions of the angle θ\theta between the proton or anti-neutron and the beam direction are well described by the form 1+αcos2θ1+\alpha\cos^2\theta, and we find α=0.595±0.012±0.015\alpha=0.595\pm0.012\pm0.015 for J/ψppˉJ/\psi\to p\bar{p} and α=0.50±0.04±0.21\alpha=0.50\pm0.04\pm0.21 for J/ψnnˉJ/\psi\to n\bar{n}. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψNNˉJ/\psi\to N\bar{N} decay.Comment: 16 pages, 13 figures, the 2nd version, submitted to PR

    Precision measurement of the branching fractions of J/psi -> pi+pi-pi0 and psi' -> pi+pi-pi0

    Get PDF
    We study the decays of the J/psi and psi' mesons to pi+pi-pi0 using data samples at both resonances collected with the BES III detector in 2009. We measure the corresponding branching fractions with unprecedented precision and provide mass spectra and Dalitz plots. The branching fraction for J/psi -> pi+pi-pi0 is determined to be (2.137 +- 0.004 (stat.) +0.058-0.056 (syst.) +0.027-0.026 (norm.))*10-2, and the branching fraction for psi' -> pi+pi-pi0 is measured as (2.14 +- 0.03 (stat.) +0.08-0.07 (syst.) +0.09-0.08 (norm.))*10-4. The J/psi decay is found to be dominated by an intermediate rho(770) state, whereas the psi' decay is dominated by di-pion masses around 2.2 GeV/c2, leading to strikingly different Dalitz distributions.Comment: 15 pages, 2 figure
    corecore