184 research outputs found

    Array comparative genomic hybridization: results from an adult population with drug-resistant epilepsy and co-morbidities.

    Get PDF
    The emergence of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated recognition of microdeletions and microduplications as risk factors for both generalised and focal epilepsies. Furthermore, there is evidence that some microdeletions/duplications, such as the 15q13.3 deletion predispose to a range of neuropsychiatric disorders, including intellectual disability (ID), autism, schizophrenia and epilepsy. We hypothesised that array CGH would reveal relevant findings in an adult patient group with epilepsy and complex phenotypes

    Prostate-specific membrane antigen: evidence for the existence of a second related human gene.

    Get PDF
    Prostate-specific membrane antigen (PSM) is a glycoprotein recognised by the prostate-specific monoclonal antibody 7E11-C5, which was raised against the human prostatic carcinoma cell line LNCaP. A cDNA clone for PSM has been described. PSM is of clinical importance for a number of reasons. Radiolabelled antibody is being evaluated both as an imaging agent and as an immunotherapeutic in prostate cancer. Use of the PSM promoter has been advocated for gene therapy applications to drive prostate-specific gene expression. Although PSM is expressed in normal prostate as well as in primary and secondary prostatic carcinoma, different splice variants in malignant tissue afford the prospect of developing reverse transcription-polymerase chain reaction (RT-PCR)-based diagnostic screens for the presence of prostatic carcinoma cells in the circulation. We have undertaken characterisation of the gene for PSM in view of the protein's interesting characteristics. Unexpectedly, we have found that there are other sequences apparently related to PSM in the human genome and that PSM genomic clones map to two separate and distinct loci on human chromosome 11. Investigation of the function of putative PSM-related genes will be necessary to enable us to define fully the role of PSM itself in the development of prostatic carcinoma and in the clinical management of this malignancy

    Functional analysis of four LDLR 5'UTR and promoter variants in patients with familial hypercholesterolaemia.

    Get PDF
    Familial hypercholesterolaemia (FH) is an autosomal dominant inherited disease characterised by increased low-density lipoprotein cholesterol (LDL-C) levels. The functionality of four novel variants within the LDLR 5'UTR and promoter located at c.-13A>G, c.-101T>C, c.-121T>C and c.-215A>G was investigated using in silico and in vitro assays, and a systemic bioinformatics analysis of all 36 reported promoter variants are presented. Bioinformatic tools predicted that all four variants occurred in sites likely to bind transcription factors and that binding was altered by the variant allele. Luciferase assay was performed for all the variants. Compared with wild type, the c.-101T>C and c.-121T>C variants showed significantly lower mean (±SD) luciferase activity (64±8 and 72±8%, all PG or c.-215A>G variants (96±15 and 100±12%), suggesting these variants are not FH causing. Similar results were seen for the c.-101T>C and c.-121T>C variants in lipid-depleted serum. However, a significant reduction in luciferase activity was seen in the c.-215A>G variant in lipid-depleted serum. Electrophoretic-mobility shift assays identified allele-specific binding of liver (hepatoma) nuclear proteins to c.-121T>C and suggestive differential binding to c.-101T>C but no binding to c.-215A>G. These data highlight the importance of in vitro testing of reported LDLR promoter variants to establish their role in FH. The functional assays performed suggest that the c.-101T>C and c.-121T>C variants are pathogenic, whereas c.-13A>G variant is benign, and the status of c.-215A>G remains unclear.European Journal of Human Genetics advance online publication, 24 September 2014; doi:10.1038/ejhg.2014.199

    Evaluation of non-invasive prenatal testing (NIPT) for aneuploidy in an NHS setting: a reliable accurate prenatal non-invasive diagnosis (RAPID) protocol

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Non-invasive prenatal testing (NIPT) for aneuploidies is now available through commercial companies in many countries, including through private practice in the United Kingdom (UK). Thorough evaluation of service delivery requirements are needed to facilitate NIPT being offered more widely within state funded healthcare systems such as the UK's National Health Service (NHS). Successful implementation will require the development of laboratory standards, consideration of stakeholder views, an analysis of costs and development of patient and health professional educational materials. METHODS/DESIGN: NIPT will be offered in an NHS setting as a contingent screening test. Pregnant woman will be recruited through six maternity units in England and Scotland. Women eligible for Down's syndrome screening (DSS) will be informed about the study at the time of booking. Women that choose routine DSS will be offered NIPT if they have a screening risk ≥ 1:1000. NIPT results for trisomy 21, 18, 13 will be reported within 7-10 working days. Data on DSS, NIPT and invasive testing uptake, pregnancy outcomes and test efficacy will be collected. Additional data will be gathered though questionnaires to a) determine acceptability to patients and health professionals, b) evaluate patient and health professional education, c) assess informed choice in women accepting or declining testing and d) gauge family expenses. Qualitative interviews will also be conducted with a sub-set of participating women and health professionals. DISCUSSION: The results of this study will make a significant contribution to policy decisions around the implementation of NIPT for aneuploidies within the UK NHS. The laboratory standards for testing and reporting, education materials and counselling strategies developed as part of the study are likely to underpin the introduction of NIPT into NHS practice. NIHR PORTFOLIO NUMBER: 13865.This manuscript presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-0707-10107) (the "RAPID" project). LSC is partially funded by the Great Ormond Street Hospital Children’s Charity and the NIHR Biomedical Research Centre at Great Ormond Street Hospital. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health

    A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly

    Get PDF
    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to life-long neurological handicap. Collectively NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n=85 anencephaly and n=5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N=509), we identified 397 rare variants (MAF<1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly

    Evaluation of non-invasive prenatal testing (NIPT) for aneuploidy in an NHS setting: a reliable accurate prenatal non-invasive diagnosis (RAPID) protocol.

    Get PDF
    Non-invasive prenatal testing (NIPT) for aneuploidies is now available through commercial companies in many countries, including through private practice in the United Kingdom (UK). Thorough evaluation of service delivery requirements are needed to facilitate NIPT being offered more widely within state funded healthcare systems such as the UK's National Health Service (NHS). Successful implementation will require the development of laboratory standards, consideration of stakeholder views, an analysis of costs and development of patient and health professional educational materials.Methods/design: NIPT will be offered in an NHS setting as a contingent screening test. Pregnant woman will be recruited through six maternity units in England and Scotland. Women eligible for Down's syndrome screening (DSS) will be informed about the study at the time of booking. Women that choose routine DSS will be offered NIPT if they have a screening risk >=1:1000. NIPT results for trisomy 21, 18, 13 will be reported within 7-10 working days. Data on DSS, NIPT and invasive testing uptake, pregnancy outcomes and test efficacy will be collected. Additional data will be gathered though questionnaires to a) determine acceptability to patients and health professionals, b) evaluate patient and health professional education, c) assess informed choice in women accepting or declining testing and d) gauge family expenses. Qualitative interviews will also be conducted with a sub-set of participating women and health professionals

    Uncovering genomic causes of co-morbidity in epilepsy: Gene-driven phenotypic characterization of rare microdeletions

    Get PDF
    Background Patients with epilepsy often suffer from other important conditions. The existence of such co-morbidities is frequently not recognized and their relationship with epilepsy usually remains unexplained. Methodology/Principal Findings We describe three patients with common, sporadic, non-syndromic epilepsies in whom large genomic microdeletions were found during a study of genetic susceptibility to epilepsy. We performed detailed gene-driven clinical investigations in each patient. Disruption of the function of genes in the deleted regions can explain co-morbidities in these patients. Conclusions/Significance Co-morbidities in patients with epilepsy can be part of a genomic abnormality even in the absence of (known) congenital malformations or intellectual disabilities. Gene-driven phenotype examination can also reveal clinically significant unsuspected condition
    corecore