2,140 research outputs found

    The Optical-Near-IR Spectrum of the M87 Jet From HST Observations

    Get PDF
    We present 1998 HST observations of M87 which yield the first single-epoch optical and radio-optical spectral index images of the jet at 0.150.15'' resolution. We find 0.67 \approx 0.67, comparable to previous measurements, and 0.9 \approx 0.9 (FνναF_\nu \propto \nu^{-\alpha}), slightly flatter than previous workers. Reasons for this discrepancy are discussed. These observations reveal a large variety of spectral slopes. Bright knots exhibit flatter spectra than interknot regions. The flattest spectra (αo0.50.6\alpha_o \sim 0.5-0.6; comparable to or flatter than αro\alpha_{ro}) are found in two inner jet knots (D-East and HST-1) which contain the fastest superluminal components. In knots A, B and C, αo\alpha_o and αro\alpha_{ro} are essentially anti-correlated. Near the flux maxima of knots HST-1 and F, changes in αro\alpha_{ro} lag changes in αo\alpha_o, but in knots D and E, the opposite relationship is observed. This is further evidence that radio and optical emissions in the M87 jet come from substantially different physical regions. The delays observed in the inner jet are consistent with localized particle acceleration, with tacc<<tcoolt_{acc} << t_{cool} for optically emitting electrons in knots HST-1 and F, and tacctcoolt_{acc} \sim t_{cool} for optically emitting electrons in knots D and E. Synchrotron models yield \nu_B \gsim 10^{16} Hz for knots D, A and B, and somewhat lower values, νB10151016\nu_B \sim 10^{15}- 10^{16} Hz, in other regions. If X-ray emissions from knots A, B and D are co-spatial with optical and radio emission, we can strongly rule out the ``continuous injection'' model. Because of the short lifetimes of X-ray synchrotron emitting particles, the X-ray emission likely fills volumes much smaller than the optical emission regions.Comment: Text 17 pages, 3 Tables, 11 figures, accepted by Ap

    Modeling the electronic behavior of γ\gamma-LiV2O5: a microscopic study

    Full text link
    We determine the electronic structure of the one-dimensional spin-1/2 Heisenberg compound γ\gamma-LiV2_2O5_5, which has two inequivalent vanadium ions, V(1) and V(2), via density-functional calculations. We find a relative V(1)-V(2) charge ordering of roughly 70:3070:30. We discuss the influence of the charge ordering on the electronic structure and the magnetic behavior. We give estimates of the basic hopping matrix elements and compare with the most studied α\alpha '-NaV2_2O5_5.Comment: Final version. To appear in Phys. Rev. Let

    Theory of Non-Reciprocal Optical Effects in Antiferromagnets: The Case Cr_2O_3

    Full text link
    A microscopic model of non-reciprocal optical effects in antiferromagnets is developed by considering the case of Cr_2O_3 where such effects have been observed. These effects are due to a direct coupling between light and the antiferromagnetic order parameter. This coupling is mediated by the spin-orbit interaction and involves an interplay between the breaking of inversion symmetry due to the antiferromagnetic order parameter and the trigonal field contribution to the ligand field at the magnetic ion. We evaluate the matrix elements relevant for the non-reciprocal second harmonic generation and gyrotropic birefringence.Comment: accepted for publication in Phys. Rev.

    Frustration induced Raman scattering in CuGeO_3

    Full text link
    We present experimental data for the Raman intensity in the spin-Peierls compound CuGeO_3 and theoretical calculations from a one-dimensional frustrated spin model. The theory is based on (a) exact diagonalization and (b) a recently developed solitonic mean field theory. We find good agreement between the 1D-theory in the homogeneous phase and evidence for a novel dimerization of the Raman operator in the spin-Peierls state. Finally we present evidence for a coupling between the interchain exchange, the spin-Peierls order parameter and the magnetic excitations along the chains.Comment: Phys. Rev. B, Rapid Comm, in Pres

    A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter

    Full text link
    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multi-anode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and started collecting colliding beam data by the end of the same year. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version published in IEEE-Trans.Nucl.Sci.

    Ferromagnetism in Fe-substituted spinel semiconductor ZnGa2_2O4_4

    Full text link
    Motivated by the recent experimental observation of long range ferromagnetic order at a relatively high temperature of 200K in the Fe-doped ZnGa2_2O4_4 semiconducting spinel, we propose a possible mechanism for the observed ferromagnetism in this system. We show, supported by band structure calculations, how a model similar to the double exchange model can be written down for this system and calculate the ground state phase diagram for the two cases where Fe is doped either at the tetrahedral position or at the octahedral position. We find that in both cases such a model can account for a stable ferromagnetic phase in a wide range of parameter space. We also argue that in the limit of high Fe2+^{2+} concentration at the tetrahedral positions a description in terms of a two band model is essential. The two ege_g orbitals and the hopping between them play a crucial role in stabilizing the ferromagnetic phase in this limit. The case when Fe is doped simultaneously at both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

    Get PDF
    The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, 9.0×103<t<4.1×1029.0\times10^{-3}<-t<4.1\times10^{-2} (GeV/c)2c)^{2}, was measured with a 21.7 GeV/cc polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, r5r_5, was obtained from the analyzing power to be Rer5=0.088±0.058\text{Re} r_5=0.088\pm 0.058 and Imr5=0.161±0.226\text{Im} r_5=-0.161\pm 0.226.Comment: 4 pages, 4 figures and 1 table. Accepted by Physical Review Letter

    Production of pizero and eta mesons at large transverse momenta in pi-p and pi-Be interactions at 515 GeV/c

    Full text link
    We present results on the production of high transverse momentum pizero and eta mesons in pi-p and pi-Be interactions at 515 GeV/c. The data span the kinematic ranges 1 < p_T < 11 GeV/c in transverse momentum and -0.75 < y < 0.75 in rapidity. The inclusive pizero cross sections are compared with next-to-leading order QCD calculations and to expectations based on a phenomenological parton-k_T model.Comment: RevTeX4, 15 pages, 15 figures, to be submitted to Phys. Rev.
    corecore