2,140 research outputs found
The Optical-Near-IR Spectrum of the M87 Jet From HST Observations
We present 1998 HST observations of M87 which yield the first single-epoch
optical and radio-optical spectral index images of the jet at
resolution. We find , comparable to previous
measurements, and (),
slightly flatter than previous workers. Reasons for this discrepancy are
discussed. These observations reveal a large variety of spectral slopes. Bright
knots exhibit flatter spectra than interknot regions. The flattest spectra
(; comparable to or flatter than ) are
found in two inner jet knots (D-East and HST-1) which contain the fastest
superluminal components. In knots A, B and C, and are
essentially anti-correlated. Near the flux maxima of knots HST-1 and F, changes
in lag changes in , but in knots D and E, the opposite
relationship is observed. This is further evidence that radio and optical
emissions in the M87 jet come from substantially different physical regions.
The delays observed in the inner jet are consistent with localized particle
acceleration, with for optically emitting electrons in
knots HST-1 and F, and for optically emitting electrons
in knots D and E. Synchrotron models yield \nu_B \gsim 10^{16} Hz for knots
D, A and B, and somewhat lower values, Hz, in
other regions. If X-ray emissions from knots A, B and D are co-spatial with
optical and radio emission, we can strongly rule out the ``continuous
injection'' model. Because of the short lifetimes of X-ray synchrotron emitting
particles, the X-ray emission likely fills volumes much smaller than the
optical emission regions.Comment: Text 17 pages, 3 Tables, 11 figures, accepted by Ap
Modeling the electronic behavior of -LiV2O5: a microscopic study
We determine the electronic structure of the one-dimensional spin-1/2
Heisenberg compound -LiVO, which has two inequivalent vanadium
ions, V(1) and V(2), via density-functional calculations. We find a relative
V(1)-V(2) charge ordering of roughly . We discuss the influence of the
charge ordering on the electronic structure and the magnetic behavior. We give
estimates of the basic hopping matrix elements and compare with the most
studied -NaVO.Comment: Final version. To appear in Phys. Rev. Let
Theory of Non-Reciprocal Optical Effects in Antiferromagnets: The Case Cr_2O_3
A microscopic model of non-reciprocal optical effects in antiferromagnets is
developed by considering the case of Cr_2O_3 where such effects have been
observed. These effects are due to a direct coupling between light and the
antiferromagnetic order parameter. This coupling is mediated by the spin-orbit
interaction and involves an interplay between the breaking of inversion
symmetry due to the antiferromagnetic order parameter and the trigonal field
contribution to the ligand field at the magnetic ion. We evaluate the matrix
elements relevant for the non-reciprocal second harmonic generation and
gyrotropic birefringence.Comment: accepted for publication in Phys. Rev.
Frustration induced Raman scattering in CuGeO_3
We present experimental data for the Raman intensity in the spin-Peierls
compound CuGeO_3 and theoretical calculations from a one-dimensional frustrated
spin model. The theory is based on (a) exact diagonalization and (b) a recently
developed solitonic mean field theory. We find good agreement between the
1D-theory in the homogeneous phase and evidence for a novel dimerization of the
Raman operator in the spin-Peierls state. Finally we present evidence for a
coupling between the interchain exchange, the spin-Peierls order parameter and
the magnetic excitations along the chains.Comment: Phys. Rev. B, Rapid Comm, in Pres
A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter
A detector designed to measure early particle showers has been installed in
front of the central CDF calorimeter at the Tevatron. This new preshower
detector is based on scintillator tiles coupled to wavelength-shifting fibers
read out by multi-anode photomultipliers and has a total of 3,072 readout
channels. The replacement of the old gas detector was required due to an
expected increase in instantaneous luminosity of the Tevatron collider in the
next few years. Calorimeter coverage, jet energy resolution, and electron and
photon identification are among the expected improvements. The final detector
design, together with the R&D studies that led to the choice of scintillator
and fiber, mechanical assembly, and quality control are presented. The detector
was installed in the fall 2004 Tevatron shutdown and started collecting
colliding beam data by the end of the same year. First measurements indicate a
light yield of 12 photoelectrons/MIP, a more than two-fold increase over the
design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version
published in IEEE-Trans.Nucl.Sci.
Ferromagnetism in Fe-substituted spinel semiconductor ZnGaO
Motivated by the recent experimental observation of long range ferromagnetic
order at a relatively high temperature of 200K in the Fe-doped ZnGaO
semiconducting spinel, we propose a possible mechanism for the observed
ferromagnetism in this system. We show, supported by band structure
calculations, how a model similar to the double exchange model can be written
down for this system and calculate the ground state phase diagram for the two
cases where Fe is doped either at the tetrahedral position or at the octahedral
position. We find that in both cases such a model can account for a stable
ferromagnetic phase in a wide range of parameter space. We also argue that in
the limit of high Fe concentration at the tetrahedral positions a
description in terms of a two band model is essential. The two orbitals
and the hopping between them play a crucial role in stabilizing the
ferromagnetic phase in this limit. The case when Fe is doped simultaneously at
both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear
ASCR/HEP Exascale Requirements Review Report
This draft report summarizes and details the findings, results, and
recommendations derived from the ASCR/HEP Exascale Requirements Review meeting
held in June, 2015. The main conclusions are as follows. 1) Larger, more
capable computing and data facilities are needed to support HEP science goals
in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of
the demand at the 2025 timescale is at least two orders of magnitude -- and in
some cases greater -- than that available currently. 2) The growth rate of data
produced by simulations is overwhelming the current ability, of both facilities
and researchers, to store and analyze it. Additional resources and new
techniques for data analysis are urgently needed. 3) Data rates and volumes
from HEP experimental facilities are also straining the ability to store and
analyze large and complex data volumes. Appropriately configured
leadership-class facilities can play a transformational role in enabling
scientific discovery from these datasets. 4) A close integration of HPC
simulation and data analysis will aid greatly in interpreting results from HEP
experiments. Such an integration will minimize data movement and facilitate
interdependent workflows. 5) Long-range planning between HEP and ASCR will be
required to meet HEP's research needs. To best use ASCR HPC resources the
experimental HEP program needs a) an established long-term plan for access to
ASCR computational and data resources, b) an ability to map workflows onto HPC
resources, c) the ability for ASCR facilities to accommodate workflows run by
collaborations that can have thousands of individual members, d) to transition
codes to the next-generation HPC platforms that will be available at ASCR
facilities, e) to build up and train a workforce capable of developing and
using simulations and analysis to support HEP scientific research on
next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam
The analyzing power for proton-carbon elastic scattering in the
coulomb-nuclear interference region of momentum transfer,
(GeV/, was measured with a 21.7
GeV/ polarized proton beam at the Alternating Gradient Synchrotron of
Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip
amplitude, , was obtained from the analyzing power to be and .Comment: 4 pages, 4 figures and 1 table. Accepted by Physical Review Letter
Production of pizero and eta mesons at large transverse momenta in pi-p and pi-Be interactions at 515 GeV/c
We present results on the production of high transverse momentum pizero and
eta mesons in pi-p and pi-Be interactions at 515 GeV/c. The data span the
kinematic ranges 1 < p_T < 11 GeV/c in transverse momentum and -0.75 < y < 0.75
in rapidity. The inclusive pizero cross sections are compared with
next-to-leading order QCD calculations and to expectations based on a
phenomenological parton-k_T model.Comment: RevTeX4, 15 pages, 15 figures, to be submitted to Phys. Rev.
- …