12,128 research outputs found

    Gapless Hartree-Fock-Bogoliubov Approximation for Bose Gases

    Full text link
    A dilute Bose system with Bose-Einstein condensate is considered. It is shown that the Hartree-Fock-Bogolubov approximation can be made both conserving as well as gapless. This is achieved by taking into account all physical normalization conditions, that is, the normalization condition for the condensed particles and that for the total number of particles. Two Lagrange multipliers, introduced for preserving these normalization conditions, make the consideration completely self-consistent.Comment: Latex file, 22 pages, 2 figure

    Josephson and proximity effects on the surface of a topological insulator

    Full text link
    We investigate Josephson and proximity effects on the surface of a topological insulator on which superconductors and a ferromagnet are deposited. The superconducting regions are described by the conventional BCS Hamiltonian, rather than the superconducting Dirac Hamiltonian. Junction interfaces are assumed to be dirty. We obtain analytical expressions of the Josephson current and the proximity-induced anomalous Green's function on the topological insulator. The dependence of the Josephson effect on the junction length, the temperature, the chemical potential and the magnetization is discussed. It is also shown that the proximity-induced pairing on the surface of a topological insulator includes even and odd frequency triplet pairings as well as a conventional s-wave one.Comment: 7 pages, 5 figure

    Ab initio methods for finite temperature two-dimensional Bose gases

    Full text link
    The stochastic Gross-Pitaevskii equation and modified Popov theory are shown to provide an ab initio description of finite temperature, weakly-interacting two-dimensional Bose gas experiments. Using modified Popov theory, a systematic approach is developed in which the momentum cut-off inherent to classical field methods is removed as a free parameter. This is shown to yield excellent agreement with the recent experiment of Hung et al. [Nature, 470, 236 (2011)], verifying that the stochastic Gross-Pitaevskii equation captures the observed universality and scale-invariance.Comment: 5 pages, 4 figure

    Vortex mass in a superfluid at low frequencies

    Full text link
    An inertial mass of a vortex can be calculated by driving it round in a circle with a steadily revolving pinning potential. We show that in the low frequency limit this gives precisely the same formula that was used by Baym and Chandler, but find that the result is not unique and depends on the force field used to cause the acceleration. We apply this method to the Gross-Pitaevskii model, and derive a simple formula for the vortex mass. We study both the long range and short range properties of the solution. We agree with earlier results that the non-zero compressibility leads to a divergent mass. From the short-range behavior of the solution we find that the mass is sensitive to the form of the pinning potential, and diverges logarithmically when the radius of this potential tends to zero.Comment: 4 page

    Multidimensional Worldline Instantons

    Get PDF
    We extend the worldline instanton technique to compute the vacuum pair production rate for spatially inhomogeneous electric background fields, with the spatial inhomogeneity being genuinely two or three dimensional, both for the magnitude and direction of the electric field. Other techniques, such as WKB, have not been applied to such higher dimensional problems. Our method exploits the instanton dominance of the worldline path integral expression for the effective action.Comment: 22 pages, 13 figure

    Vortex-Phonon Interaction in the Kosterlitz-Thouless Theory

    Get PDF
    The "canonical" variables of the Kosterlitz-Thouless theory--fields Φ0(r)\Phi_0({\bf r}) and ϕ(r)\phi({\bf r}), generally believed to stand for vortices and phonons (or their XY equivalents, like spin waves, etc.) turn out to be neither vortices and phonons, nor, strictly speaking, {\it canonical} variables. The latter fact explains paradoxes of (i) absence of interaction between Φ0\Phi_0 and ϕ\phi, and (ii) non-physical contribution of small vortex pairs to long-range phase correlations. We resolve the paradoxes by explicitly relating Φ0\Phi_0 and ϕ\phi to canonical vortex-pair and phonon variables.Comment: 4 pages, RevTe

    Improved Approximations for Fermion Pair Production in Inhomogeneous Electric Fields

    Get PDF
    Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter electric field E_0 sech^2 (z/L), and in a temporally localized electric field such as E_0 sech^2 (t/T). The integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum leads to the pair-production rate obtained by the worldline instanton method, including the prefactor, of Phys. Rev. D72, 105004 (2005) and D73, 065028 (2006). It is further shown that the WKB instanton action plus the next-to-leading order contribution in spinor QED equals the WKB instanton action in scalar QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions. Finally we obtain the pair-production rate in a spatially localized electric field together with a constant magnetic field in the same direction.Comment: RevTex, 12 pages, two figures; replaced by the version accepted in Phys. Rev.

    Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems

    Get PDF
    The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied throughout the whole density range using path integral Monte Carlo simulations and summarized in the phase diagram. While at low densities, we find good agreement with the universal results depending only on the scattering length asa_s, at moderate and high densities, the transition temperature is strongly affected by interactions and the elementary excitation spectrum. The results are expected to be of relevance to dipolar atomic and molecular systems and indirect excitons in quantum wells

    Mean-field phase diagram of the 1-D Bose gas in a disorder potential

    Get PDF
    We study the quantum phase transition of the 1D weakly interacting Bose gas in the presence of disorder. We characterize the phase transition as a function of disorder and interaction strengths, by inspecting the long-range behavior of the one-body density matrix as well as the drop in the superfluid fraction. We focus on the properties of the low-energy Bogoliubov excitations that drive the phase transition, and find that the transition to the insulator state is marked by a diverging density of states and a localization length that diverges as a power-law with power 1. We draw the phase diagram and we observe that the boundary between the superfluid and the Bose glass phase is characterized by two different algebraic relations. These can be explained analytically by considering the limiting cases of zero and infinite disorder correlation length.Comment: 10 pages, 10 figure
    corecore