11,522 research outputs found
SOME FORENSIC ASPECTS OF BALLISTIC IMAGING
Analysis of ballistics evidence (spent cartridge casings and bullets) has been a staple of forensic criminal investigation for almost a century. Computer-assisted databases of images of ballistics evidence have been used since the mid-1980s to help search for potential matches between pieces of evidence. In this article, we draw on the 2008 National Research Council Report Ballistic Imaging to assess the state of ballistic imaging technology. In particular, we discuss the feasibility of creating a national reference ballistic imaging database (RBID) from test-fires of all newly manufactured or imported firearms. A national RBID might aid in using crime scene ballistic evidence to generate investigative leads to a crime gun’s point of sale. We conclude that a national RBID is not feasible at this time, primarily because existing imaging methodologies have insufficient discriminatory power. We also examine the emerging technology of micro- stamping for forensic identification purposes: etching a known identifier on firearm or ammunition parts so that they can be directly read and recovered from crime scene evidence. Microstamping could provide a stronger basis for identification based on ballistic evidence than the status quo, but substantial further research is needed to thoroughly assess its practical viability
The Latin Leaflet, Number 29
Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety.
Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety.
The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices
The number of privately treated tuberculosis cases in India: an estimation from drug sales data
Background Understanding the amount of tuberculosis managed by the private sector in India is crucial to understanding the true burden of the disease in the country, and thus globally. In the absence of quality surveillance data on privately treated patients, commercial drug sales data offer an empirical foundation for disease burden estimation. Methods We used a large, nationally representative commercial dataset on sales of 189 anti-tuberculosis products available in India to calculate the amount of anti-tuberculosis treatment in the private sector in 2013–14. We corrected estimates using validation studies that audited prescriptions against tuberculosis diagnosis, and estimated uncertainty using Monte Carlo simulation. To address implications for numbers of patients with tuberculosis, we explored varying assumptions for average duration of tuberculosis treatment and accuracy of private diagnosis. Findings There were 17·793 million patient-months (95% credible interval 16·709 million to 19·841 million) of anti-tuberculosis treatment in the private sector in 2014, twice as many as the public sector. If 40–60% of private-sector tuberculosis diagnoses are correct, and if private-sector tuberculosis treatment lasts on average 2–6 months, this implies that 1·19–5·34 million tuberculosis cases were treated in the private sector in 2014 alone. The midpoint of these ranges yields an estimate of 2·2 million cases, two to three times higher than currently assumed. Interpretation India's private sector is treating an enormous number of patients for tuberculosis, appreciably higher than has been previously recognised. Accordingly, there is a re-doubled need to address this burden and to strengthen surveillance. Tuberculosis burden estimates in India and worldwide require revision
Studies on the Insecticidal and Repellent Properties of the Seed Extract of Tephrosia Purpurea (LINN) Pers
Laboratory and field trials were conducted to find out the insecticidal and repellent properties of petroleum ether extract of the seeds of Tephrosia purpurea. In laboratory trials contact toxicity of the extract was assessed against land leeches, houseflies, mosquitoes, rice weevil and flour beetle. In field trials, the repellency of the extract was assessed against land leeches, mosquitoes and simulium flies. In laboratory trials, the dosage required for 100 per cent mortality was 0.0005 gm/cm/sup 2/ for land leeches, 0.0157 gm/cm/sup 2/ for flour beetle. In field trials, the extract was found to be repellent against land leeches for 5 hours, mosquitoes for 4 hours and simulium flies for 5 hours
Twisted supersymmetric 5D Yang-Mills theory and contact geometry
We extend the localization calculation of the 3D Chern-Simons partition
function over Seifert manifolds to an analogous calculation in five dimensions.
We construct a twisted version of N=1 supersymmetric Yang-Mills theory defined
on a circle bundle over a four dimensional symplectic manifold. The notion of
contact geometry plays a crucial role in the construction and we suggest a
generalization of the instanton equations to five dimensional contact
manifolds. Our main result is a calculation of the full perturbative partition
function on a five sphere for the twisted supersymmetric Yang-Mills theory with
different Chern-Simons couplings. The final answer is given in terms of a
matrix model. Our construction admits generalizations to higher dimensional
contact manifolds. This work is inspired by the work of Baulieu-Losev-Nekrasov
from the mid 90's, and in a way it is covariantization of their ideas for a
contact manifold.Comment: 28 pages; v2: minor mistake corrected; v3: matches published versio
Numerical Model Studies on Coastal Processes in a Critically Eroding Sector of South West Coast of India
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Isotropic representation of noncommutative 2D harmonic oscillator
We show that 2D noncommutative harmonic oscillator has an isotropic
representation in terms of commutative coordinates. The noncommutativity in the
new mode, induces energy level splitting, and is equivalent to an external
magnetic field effect. The equivalence of the spectra of the isotropic and
anisotropic representation is traced back to the existence of SU(2) invariance
of the noncommutative model.Comment: 15 pages, RevTex4, no figures; article format, improved version of
the previous paper; new references and aknowledgements adde
Observation of sub-Bragg diffraction of waves in crystals
We investigate the diffraction conditions and associated formation of
stopgaps for waves in crystals with different Bravais lattices. We identify a
prominent stopgap in high-symmetry directions that occurs at a frequency below
the ubiquitous first-order Bragg condition. This sub-Bragg diffraction
condition is demonstrated by reflectance spectroscopy on two-dimensional
photonic crystals with a centred rectangular lattice, revealing prominent
diffraction peaks for both the sub-Bragg and first-order Bragg condition. These
results have implications for wave propagation in 2 of the 5 two-dimensional
Bravais lattices and 7 out of 14 three-dimensional Bravais lattices, such as
centred rectangular, triangular, hexagonal and body-centred cubic
- …