5,663 research outputs found

    LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts

    Get PDF
    Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 308030-80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called "stria" bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of 0.1-0.6c. Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency; the striae bandwidths are in the range of ~20-100 kHz and the striae drift rates vary from zero to ~0.3 MHz s^-1. The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of dn/n~10^-3, their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of 400-800 km/s. These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves

    Results of the measurement of the vertical profile of ozone up to a height of 70 km by means of the MR-12 and M-100 sounding rockets

    Get PDF
    The photometers used and methods of calculation of the vertical ozone concentration profile are described. The results obtained in several series of MR-12 and M-100 sounding rocket launchings are presented and discussed

    Formation of singularities on the surface of a liquid metal in a strong electric field

    Full text link
    The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.Comment: 14 page
    corecore