17 research outputs found

    Water Vapour Effects in Mass Measurement

    Full text link
    Water vapour inside the mass comparator enclosure is a critical parameter. In fact, fluctuations of this parameter during mass weighing can lead to errors in the determination of an unknown mass. To control that, a proposal method is given and tested. Preliminary results of our observation of water vapour sorption and desorption processes from walls and mass standard are reported

    Bloch oscillations of ultracold atoms: a tool for a metrological determination of h/mRbh/m_{Rb}

    Full text link
    We use Bloch oscillations in a horizontal moving standing wave to transfer a large number of photon recoils to atoms with a high efficiency (99.5% per cycle). By measuring the photon recoil of 87Rb^{87}Rb, using velocity selective Raman transitions to select a subrecoil velocity class and to measure the final accelerated velocity class, we have determined h/mRbh/m_{Rb} with a relative precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our method, we are developing a vertical standing wave set-up. This will allow us to measure h/mRbh/m_{Rb} better than 10−810^{-8} and hence the fine structure constant α\alpha with an uncertainty close to the most accurate value coming from the (g−2g-2) determination

    Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy

    Full text link
    In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure

    Proposal for new experimental schemes to realize the Avogadro constant

    Get PDF
    We propose two experimental schemes to determine and so to realize the Avogadro constant N_AN\_{A} at the level of 10−7^{-7} or better with a watt balance experiment and a cold atom experiment measuring h/m(X)h/m(X) (where hh is the Planck constant and m(X)m(X) the mass of the atom XX). We give some prospects about achievable uncertainties and we discuss the opportunity to test the existence of possible unknown correction factors for the Josephson effect and quantum Hall effect

    Viral epidemics in a cell culture: novel high resolution data and their interpretation by a percolation theory based model

    Get PDF
    Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation.Comment: To appear in PLoS ONE. Supporting material can be downloaded from http://amur.elte.hu/BDGVirus

    RéfractomÚtre : référence de longueur d'onde dans l'air

    No full text
    L'une des principales sources d'incertitudes limitant la précision des mesures dimensionnelles dans l'air par méthode interférométrique est liée à l'incertitude de mesure de l'indice de réfraction et à celle de ses fluctuations. A ce jour les meilleurs réfractomÚtres n'atteignent que des incertitudes à l'échelle des 10-7, et leurs temps de réponse relativement grands ne permettent pas d'effectuer des mesures en temps réel. Dans cet article, nous présentons le principe d'un nouveau type de réfractomÚtre, en développement à l'INM, pour la mesure en temps réel de l'indice de l'air avec une précision d'environ 10-9, ainsi que quelques résultats préliminaires

    Technologies for the ELGAR large scale atom interferometer array

    No full text
    We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz‟‟‟√ at 1.7 Hz. In this paper we detail the main technological bricks of this large scale detector and emphasis the research pathways to be conducted for its realization. We discuss the site options, atom optics, and source requirements needed to reach the target sensitivity. We then discuss required seismic isolation techniques, Gravity Gradient Noise reduction strategies, and the metrology of various noise couplings to the detector
    corecore