383 research outputs found

    Nonlinear waves of polarization in two-component Bose-Einstein condensates

    Full text link
    Waves with different symmetries exist in two-component Bose-Einstein condensates (BECs) whose dynamics is described by a system of coupled Gross-Pitaevskii (GP) equations. A first type of waves corresponds to excitations for which the motion of both components is locally in phase. In the second type of waves the two components have a counter-phase local motion. In the case of different values of inter- and intra-component interaction constants, the long wave-length behavior of these two modes corresponds to two types of sound with different velocities. In the limit of weak nonlinearity and small dispersion the first mode is described by the well-known Korteweg-de Vries (KdV) equation. We show that in the same limit the second mode can be described by the Gardner (modified KdV) equation, if the intra-component interaction constants have close enough values. This leads to a rich phenomenology of nonlinear excitations (solitons, kinks, algebraic solitons, breathers) which does not exist in the KdV description.Comment: 10 pages, 5 figure

    Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    Full text link
    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in appearance of stability (instability) bands in focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolor periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.Comment: 29 pages, 10 figure

    Stabilization of dipole solitons in nonlocal nonlinear media

    Full text link
    We address the stabilization of dipole solitons in nonlocal nonlinear materials by two different approaches. First, we study the properties of such solitons in thermal nonlinear media, where the refractive index landscapes induced by laser beams strongly depend on the boundary conditions and on the sample geometry. We show how the sample geometry impacts the stability of higher-order solitons in thermal nonlinear media and reveal that dipole solitons can be made dynami-cally stable in rectangular geometries in contrast to their counterparts in thermal samples with square cross-section. Second, we discuss the impact of the saturation of the nonlocal nonlinear response on the properties of multipole solitons. We find that the saturable response also stabi-lizes dipole solitons even in symmetric geometries, provided that the input power exceeds a criti-cal value.Comment: 29 pages, 8 figures, to appear in Phys. Rev.

    Vortex soliton tori with multiple nested phase singularities in dissipative media

    Full text link
    We show the existence of stable two- and three-dimensional vortex solitons carrying multiple, spatially separated, single-charge topological dislocations nested around a vortex-ring core. Such new nonlinear states are supported by elliptical gain landscapes in focusing nonlinear media with two-photon absorption. The separation between the phase dislocations is dictated mostly by the geometry of gain landscape and it only slightly changes upon variation of the gain or absorption strength.Comment: 17 pages, 5 figures, to appear in Physical Review

    Nonlinear photonic lattices in anisotropic nonlocal self-focusing media

    Full text link
    We analyze theoretically and generate experimentally two-dimensional nonlinear periodic lattices in a photorefractive medium. We demonstrate that the light-induced periodically modulated nonlinear refractive index is highly anisotropic and nonlocal, and it depends on the lattice orientation relative to the crystal axis. We discuss stability of such induced photonic structures and their guiding properties.Comment: 3 pages, 3 figure

    Nonlinear optics and light localization in periodic photonic lattices

    Full text link
    We review the recent developments in the field of photonic lattices emphasizing their unique properties for controlling linear and nonlinear propagation of light. We draw some important links between optical lattices and photonic crystals pointing towards practical applications in optical communications and computing, beam shaping, and bio-sensing.Comment: to appear in Journal of Nonlinear Optical Physics & Materials (JNOPM

    Компьютерная программа дистанционного образования в непрерывной подготовке врача лучевой диагностики

    Full text link
    This article highlights the need for a programming product for distant education and online testing of medical students, postgraduates or practicing doctors. The structure of such product is thoroughly described both from client and server sides as well as the required functionality for professors and students.Обсуждается программный продукт для дистанционного обучения и онлайн-тестирование по лучевой диагностике студентов, аспирантов и практикующих врачей. Состав такого продукта рассмотрен как с клиентской, так и серверной сторон также как и необходимая функциональность для преподавателей и студентов

    Laminated Wave Turbulence: Generic Algorithms II

    Full text link
    The model of laminated wave turbulence puts forth a novel computational problem - construction of fast algorithms for finding exact solutions of Diophantine equations in integers of order 101210^{12} and more. The equations to be solved in integers are resonant conditions for nonlinearly interacting waves and their form is defined by the wave dispersion. It is established that for the most common dispersion as an arbitrary function of a wave-vector length two different generic algorithms are necessary: (1) one-class-case algorithm for waves interacting through scales, and (2) two-class-case algorithm for waves interacting through phases. In our previous paper we described the one-class-case generic algorithm and in our present paper we present the two-class-case generic algorithm.Comment: to appear in J. "Communications in Computational Physics" (2006

    Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture

    Get PDF
    The Multiplexed Structured Image Capture (MUSIC) technique is used to demonstrate single-shot multiframe passive imaging, with a nanosecond difference between the resulting images. This technique uses modulation of light from a scene before imaging, in order to encode the target’s temporal evolution into spatial frequency shifts, each of which corresponds to a unique time and results in individual and distinct snapshots. The resulting images correspond to different effective imaging gate times, because of the optical path delays. Computer processing of the multiplexed single-shot image recovers the nanosecond-resolution evolution. The MUSIC technique is used to demonstrate imaging of a laser-induced plasma. Simultaneous single-shot measurements of electron numbers by coherent microwave scattering were obtained and showed good agreement with MUSIC characterization. The MUSIC technique demonstrates spatial modulation of images used for passive imaging. This allows multiple frames to be stacked into a single image. This method could also pave the way for real-time imaging and characterization of ultrafast processes and visualization, as well as general tracking of fast objects

    Soliton topology versus discrete symmetry in optical lattices

    Full text link
    We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general ``charge rule'' using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing in the case of Bessel lattices allows us to derive also a overall stability rule for the allowed vortex solitons.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let
    corecore