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Abstract: The Multiplexed Structured Image Capture (MUSIC) technique is used to 
demonstrate single-shot multiframe passive imaging, with a nanosecond difference between 
the resulting images. This technique uses modulation of light from a scene before imaging, in 
order to encode the target’s temporal evolution into spatial frequency shifts, each of which 
corresponds to a unique time and results in individual and distinct snapshots. The resulting 
images correspond to different effective imaging gate times, because of the optical path 
delays. Computer processing of the multiplexed single-shot image recovers the nanosecond-
resolution evolution. The MUSIC technique is used to demonstrate imaging of a laser-
induced plasma. Simultaneous single-shot measurements of electron numbers by coherent 
microwave scattering were obtained and showed good agreement with MUSIC 
characterization. The MUSIC technique demonstrates spatial modulation of images used for 
passive imaging. This allows multiple frames to be stacked into a single image. This method 
could also pave the way for real-time imaging and characterization of ultrafast processes and 
visualization, as well as general tracking of fast objects. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Passive imaging at nanoseconds or less exposure time has many scientific and engineering 
applications, including laser-material interactions, femtosecond filament, high harmonic 
generations, ultrafast chemistry, and air lasing [1]. Current complementary metal-oxide 
semiconductor (CMOS) and charge-coupled device (CCD) imaging devices cannot reach this 
speed due to limited on-chip storage capacity and electronic readout speeds, although in 
theory silicon can reach sub-nanosecond speed [2,3]. Various optical gating and pump-probe 
approaches, such as ultrashort pulse interference [4], the Kerr electro-optic effect for ballistic 
imaging [5,6], can capture only a single image. Temporal scanning, i.e., repetitive 
measurements with a varied delay between the pump and probe or between laser pulse and 
camera gate can be used [7], but are significantly limited the applications to repetitive events, 
and therefore, only provide statistical measurements. Recent demonstrations of passive 
imaging methods utilize compressed sensing to recover ultrafast images from a streak camera 
or temporal pixel multiplexing [8], which is different from the current approach [9,10]. Others 
have utilized spatial modulation of the light source for boosting imaging speeds and storing 
multiple images in a single frame [11]. Modulation of light just prior to collection for 
boosting imaging speeds has also been demonstrated [12,13]. A recent review [14] explores 
in detail a variety of novel ultra-fast single-shot imaging techniques. 

In the present work, a detailed study of single-shot, passive imaging with temporal 
resolution at the nanosecond level is presented using a unique high-speed computational 
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information was captured in each channel. Note that path 3 contributes information from the 
earliest times only. 

2.1 Three-channel multiplexed structured image capture (MUSIC) system 

A variable zoom camera lens was used to relay the plasma emissions. The first beam splitter 
(30% transmission, 70% reflection) was used to separate the images into the path one, path 
two, and path three. The image was further split by the second beam splitter (50% 
transmissions, 50% reflection) into path two and three. The plasma image was projected onto 
three Ronchi rulings (10 grooves per millimeter) along three optical paths. The modulated 
images were merged by a beam combiner cube before being collected by a gated Intensified 
CCD camera (Princeton Instruments, PI Max 4). The optical paths along three channels are 10 
cm, 40 cm, and 70 cm, respectively, which corresponds to 1 ns of delay for path two and 2 ns 
of delay for path three relative to the path one. The number of channels can be expanded as 
needed to extend more simultaneous imaging. The MUSIC system, as an ultrafast imaging 
system, can be used for single-shot nanosecond resolution or higher imaging and 
measurements of laser-induced plasma generation and visualization and tracking of fast 
objects. 

2.2 Coherent microwave scattering system 

A 10-dBm tunable microwave source (HP 8350B sweep oscillator, set at ~10 GHz) was split 
into two channels [22,24]. One of the channels was used to illuminate the plasma by 
employing a microwave horn (WR75, 15-dB gain). The backscattering is monitored through a 
homodyne transceiver detection system. The scattering from the plasma is collected by the 
same microwave horn. The signal passes through a microwave circulator and is amplified 30 
dB by one preamplifier at ~10 GHz. After the frequency is down-converted with by mixing 
with the second channel, two other amplifiers with bandwidth in the range 2.5 kHz – 500MHz 
amplifies the signal 60 dB. Considering the geometry of dipole radiation of microwave, the 
polarization of the microwave is chosen to be along the propagation direction of the laser 
beam, maximizing the scattering signal. The coherent microwave scattering system can be 
used to monitor the generation and evolution of electrons in the laser-induced plasma region 
with a temporal resolution of ~3 ns. 

2.3 Imaging target 

532 nm laser radiation from an Nd:YAG laser (Continuum Surelite) operating with a nominal 
8 ns pulse width at 10 Hz repetition rate was focused with a 50mm plano convex lens into a 
20μm spot, yielding the peak intensity of ~1012 W/cm2. Coherent microwave scattering and 
MUSIC were used to simultaneously characterize the laser-induced ionization in air, as 
shown by the experiment setup in Fig. 1(a). Microwave scattering can measure the total 
electron number evolution with a temporal resolution of ~3 nanoseconds (ns). Note that 
plasma expansion leads to a critical electron number density beyond the microwave 
penetration depth, which causes the microwave signal to decrease after peak [22]. 

A variable zoom camera lens was used to relay the plasma emissions into the three-
channel MUSIC apparatus, as shown in Fig. 1(a). The MUSIC apparatus for this work 
consists of two parts, the optical delay circuits and the spatial modulation component in each 
delay circuit. Beam splitters and mirrors allow for plasma emissions to travel three different 
paths, each of which encodes the image with a different spatial modulation pattern. An 
intensified camera (Princeton Instruments PIMax 4) with a gate width of 3 ns was used to 
collect the combined images out of the MUSIC apparatus. Note that the gated camera can 
only collect light over a time equal to the gate width, TG. The information from path one was 
modulated and sent to the camera after the beam splitter and contributes image information 
during the entire gate width. The same image was then split and modulated repeatedly, each 
time causing a delay relative to the start of the camera exposure gate, as shown in Fig. 1(b). 
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Thus, the delayed modulated images arrived later at the camera due to time of flight 
differences. Since images from each path were modulated differently, each image can be 
individually demultiplexed and recovered. Furthermore, since each image contained the same 
information but was imaged for different exposure times, delayed images represent earlier 
time information in accordance with Fig. 1(b). 

It should be noted that the current configuration uses beamsplitters and optical delays to 
gain the temporal resolutions among multiplexed images. The advantages are the simplicity in 
the experimental setup: optical delays can be on the order of picoseconds or femtoseconds for 
higher temporal resolutions. While it leads to a reduced optical efficiency for adding more 
channels. 

3. Results 

3.1 Imaging model 

The multiplexed image intensity,  CAMI , collected by the camera in multiple channels is 
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where 1Dn Dn Dt t tΔ = −  is the time delay that has traveled path n  relative to path one and nI  is 

the image intensity traveling along path, 

 

0

,  
,

Dn

n Dn
Dn

t t

I r t t
I r t t t

< Δ
 − Δ =     ≥ Δ     


  (2) 

Here, ,I t 
 
 


r  is the image intensity, nM  

 
 


r  is the spatial modulation mask for path n , and 

nε  is the optical efficiency of path n . Imaging with a gated camera can be modeled as 

windowing in the time domain, integrating (i.e. summing) image intensity over the window, 
and sampling in the spatial domain, with the spatial sampling determined by the pixel layout 
and size. The windowing function is a square pulse centered at time 0t  with width GT , 
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and 0 / 2GD Gt T T= + , with GDT  denoting the gate delay time. 

Each term in the sum in Eq. (1) represents image information that has traveled at a 
different path. Since the camera gate is finite in time, information delayed by traveling 
different paths is sliced and shortened by the gate, effectively giving the delayed information 
shorter gate times, i.e., time of flight acquisition. The spatial modulation resulting from 

applying a unique mask nM  
 
 


r  to each path, which is multiplication of the images with the 

masks in the spatial domain, is equivalent to the convolution of the images and masks in the 
spatial frequency domain. The Ronchi rulings used in this work to apply the modulation 
patterns are modeled as periodic square waves with spatially frequency 0k . 
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In the spatial frequency domain, the multiplexed image can be shown as, 
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(4) 

Here “ ⊗ ” denotes the convolution operator, where the right-hand side comes from the 

Fourier transform of the Ronchi ruling pattern, and ' cos sinxn x n y nk k kθ θ= + . Rotation of the 

Ronchi ruling by angle nθ  rotates the Fourier transform of the mask by the same amount, 

which is a sinc function. 
Images through each path contribute a unique shifted spatial frequency throughout the 

gate time GT  due to '
xnk  being different, which is shown in Fig. 2(a). It implies that due to the 

Dirac delta function in Eq. (4), each harmonic of the sinc function in the spatial frequency 
domain of the masked image contains a copy of the image of the Fourier transform of the pre-
masked image. Therefore, most of the image information is uniquely preserved in the in 
higher harmonics shown in Fig. 2(a), and by using Ronchi rulings with different rotations for 
each path, this information can be kept separate in the final composite image even if there is 
significant image overlap. Note that the center of the Fourier domain represents unshifted DC 
components of the information, and therefore contains information from all three paths. 

3.2 Computational image recovery 

The fundamental principle of MUSIC in this application is to encode the time lapse into the 
spatial frequency domain, thereby allowing a single, cumulative exposure to be captured that 
contains multiple individual images (the maximum number of images than can be stored is 
discussed later in this work). The encoded images are then recovered through selective 
filtering in the frequency domain. The spatial resolution of the multiplexed images is reduced 
and dependent on the bandwidth of the low-pass filter used during recovery. It is inherently 
determined by the uncertainty principle of Fourier transformation, i.e., Δ Δ 1rf r⋅ ≥ . 

Furthermore, it should be noted that the spatial frequencies of most images lie within low 
frequency ranges as discussed in compressed sensing techniques [25]. A loss of <5% of high 
spatial frequency components is generally used as the criterion for recovery. 
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imaging of the plasma, thus the MUSIC method is only limited by the number of modulation 
patterns and available photons for imaging. For example, a delay of hundreds of microns 
would produce ultrafast imaging at petahertz. The recovery of the multiplexed images will 
need to be subtracted to remove the temporal overlaps. 

3.4 Comparisons with coherent microwave scattering and plasma modeling 

To get insight into the physics of laser-induced ionization and the time scales associated with 
its evolution, comparisons of the MUSIC measurements with coherent microwave scattering 
and numerical simulations solving the Boltzmann kinetic equation for the electron energy 
distribution function (EEDF) were conducted. Emissions from laser-induced plasmas are 
initially broadband continuum as inverse bremsstrahlung and free-free transitions . The 
emissions become distinct atomic emission lines after the plasma cools down at 20 - 30 ns 
[22]. Coherent microwave scattering tracks total electron number in the plasma and is 
proportional to the total plasma emissions in the avalanche phase of the plasma generation. It 
should be noted that our emphasis here is a qualitative comparison of microwave scattering, 
MUSIC and plasma modeling to confirm temporal evolution of the plasma. 
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Fig. 4. Comparison of total image intensity of recovered images to microwave scattering and 
plasma modeling of the laser-induced plasma. The red solid line shows a convolution of the 
kinetic simulation results with the response function of the microwave diagnostic. 

The plasma kinetic model is based on a non-stationary kinetic equation under Lorentz 
approximation and includes effects of collisional electron heating by the laser field, 
generation of new electrons in the process of optical field ionization (OFI) from the ground 
and electronically excited molecular states, elastic scattering of electrons on N2 and O2 
molecules in air, inelastic processes of electron impact excitations of the A3Σu, B

3Πg, a
1Σu, 

a1Πg, C3Πu electronic states in molecular nitrogen, vibrational excitation in N2 and O2 
molecules, and electron impact ionization from the ground and excited electronic states. The 
calculated EEDF provides reaction rates for the coupled set of balance equations for the 
densities of electrons, neutral, and ionic and electronically excited molecular and atomic 
species. The OFI source of electrons is described using Popov-Perelomov-Terent’ev (PPT) 
strong field ionization model [26] in the form suggested in [27] and the photoelectron energy 
distribution function derived in [28]. The calculations start 3 ns before the maximum of the 
laser pulse when the OFI generated electron density reaches 1010 cm−3. The plasma density 
predicted by the simulations reaches the value ≈6⋅1017 cm−3 which is in a very good 
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agreement with the value ≈7.5⋅1017 cm−3 retrieved from the coherent microwave scattering 
measurements [23]. 

Figure 4 shows a comparison of the MUSIC measurements with the coherent microwave 
scattering and the simulated evolution of the plasma electron density. The results are 
normalized to show the overall temporal evolution only, since the plasma emissions from 
MUSIC measurements are proportional to total electron number without absolute calibration. 
Additionally, it should be noted that measured values are the result convoluted with an 
instrument function having a temporal resolution ~1 ns, which leads to the discrepancies at 
the initial phase of the ionization. 
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2 2 2

2 1≤
−diff I filter

N
k k k

(8)

The resolution of the recovered image is determined by the size of the filter, due to the 
exclusion of high frequency image information outside of the filter region. Since, 2 2

  filterk D−∝
, where D  is the smallest resolvable distance, then the limit on the resolution of the 
recovered image is: 

( )
1/ 2

1/ 22 2
≥

−diff I

αND
k k

(9)

where α  is a constant. Hence, D  will increase if the number of modulation patterns is 
increased, representing lower image quality for the recovered images. Furthermore, in order 
to decrease D, one must choose to use less patterns and larger filter radii. 

5. Summary and conclusions

Single-shot nanosecond-resolution multiframe passive imaging method, Multiplexed 
Structured Imaging and Capture (MUSIC) was demonstrated to characterize avalanche 
ionization of laser-induced plasma in air. The MUSIC technique uses beamsplitters and 
optical delay lines to generate time evolution of a scene. On each beampath the image is 
uniquely coded by a Ronchi ruling, producing distinct spatial frequency shifts of the image in 
the spatial Fourier domain. The multiplexed images from individual beampaths are captured 
by a time-gated camera at a few nanoseconds. The final image, containing time evolution of 
the scene from each path, is demultiplexed in the after-processing to recover nanosecond-
resolution images. The technique is used to monitor the temporal evolution of the avalanche 
ionization process in the laser-induced plasma in air. Comparisons with coherent microwave 
scattering measurements and plasma modeling yield good agreements. 

The MUSIC technique as demonstrated here, is a passive imaging technique, which has 
the following characteristics: 

1. The fundamental principle is to encode the time lapse into the spatial frequency
domain using different spatial modulation patterns prior to arriving at the camera.
Thus, a cumulative exposure can be captured in a single image, i.e., shifting the 
multiple exposures to various locations in the spatial frequency domain. 
Demultiplexing in the post-processing is achieved by homodyne mixing with the 
modulation pattern and low-pass filtering. 

2. The spatial resolution of time-multiplexing images is reduced and controlled by the
low-pass filter. It is inherently determined by the uncertainty principle of Fourier
transformation, Δ Δ 1rf r⋅ ≥ . 

3. The maximum multiplexing, i.e., maximum number of frames with maximum spatial
resolutions, is obtained by fully occupying the frequency domain. It is corresponding
to modulate the images with varying angles and cycle periods to fill the whole 
frequency domain up to the diffraction limit circle. 

Overall, the ability to overlay multiple frames into a single image can be very beneficial in 
various applications where only a single camera is available (e.g., optical access restrictions). 
The MUSIC passive imaging technique can be useful for high temporal resolution 
applications in physics, chemistry and engineering. 
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