37 research outputs found

    Proc. Natl. Acad. Sci. U. S. A.

    No full text
    Caspases form a family of proteinases required for the initiation and execution phases of apoptosis. Distinct proapoptotic stimuli lead to activation of the initiator caspases-8 and -9, which in turn activate the common executioner caspases-3 and -7 by proteolytic cleavage. Whereas crystal structures of several active caspases have been reported, no three-dimensional structure of an uncleaved caspase zymogen is available so far. We have determined the 2.9-Angstrom crystal structure of recombinant human C285A procaspase-7 and have elucidated the activation mechanism of caspases. The overall fold of the homodimeric procaspase-7 resembles that of the active tetrameric caspase-7. Each monomer is organized in two structured subdomains connected by partially flexible linkers, which asymmetrically occupy and block the central cavity, a typical feature of active caspases. This blockage is incompatible with a functional substrate binding site/active site. After proteolytic cleavage within the flexible linkers, the newly formed chain termini leave the cavity and fold outward to form stable structures. These conformational changes are associated with the formation of an intact active-site cleft. Therefore, this mechanism represents a formerly unknown type of proteinase zymogen activation

    Structure

    No full text
    Riboflavin synthase catalyzes the disproportionation of 6,7- dimethyl-8-ribityllumazine affording riboflavin and 5-amino-6- ribitylamino-2,4(1H,3H)-pyrimidinedione. We have determined the structure of riboflavin synthase from Schizosaccharomyces pombe in complex with the substrate analog, 6-carboxyethyl-7-oxo-8- ribityllumazine at 2.1 Angstrom resolution. In contrast to the homotrimeric solution state of native riboflavin synthase, we found the enzyme to be monomeric in the crystal structure. Structural comparison of the riboflavin synthases of S. pombe and Escherichia coli suggests oligomer contact sites and delineates the catalytic site for dimerization of the substrate and subsequent fragmentation of the pentacyclic intermediate. The pentacyclic substrate dimer was modeled into the proposed active site, and its stereochemical features were determined. The model suggests that the substrate molecule at the C- terminal domain donates a four-carbon unit to the substrate molecule bound at the N-terminal domain of an adjacent subunit in the oligomer

    Structural basis for the activation of human procaspase-7

    No full text
    Caspases form a family of proteinases required for the initiation and execution phases of apoptosis. Distinct proapoptotic stimuli lead to activation of the initiator caspases-8 and -9, which in turn activate the common executioner caspases-3 and -7 by proteolytic cleavage. Whereas crystal structures of several active caspases have been reported, no three-dimensional structure of an uncleaved caspase zymogen is available so far. We have determined the 2.9-Angstrom crystal structure of recombinant human C285A procaspase-7 and have elucidated the activation mechanism of caspases. The overall fold of the homodimeric procaspase-7 resembles that of the active tetrameric caspase-7. Each monomer is organized in two structured subdomains connected by partially flexible linkers, which asymmetrically occupy and block the central cavity, a typical feature of active caspases. This blockage is incompatible with a functional substrate binding site/active site. After proteolytic cleavage within the flexible linkers, the newly formed chain termini leave the cavity and fold outward to form stable structures. These conformational changes are associated with the formation of an intact active-site cleft. Therefore, this mechanism represents a formerly unknown type of proteinase zymogen activation

    Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8- ribityllumazine

    Get PDF
    Riboflavin synthase catalyzes the disproportionation of 6,7- dimethyl-8-ribityllumazine affording riboflavin and 5-amino-6- ribitylamino-2,4(1H,3H)-pyrimidinedione. We have determined the structure of riboflavin synthase from Schizosaccharomyces pombe in complex with the substrate analog, 6-carboxyethyl-7-oxo-8- ribityllumazine at 2.1 Angstrom resolution. In contrast to the homotrimeric solution state of native riboflavin synthase, we found the enzyme to be monomeric in the crystal structure. Structural comparison of the riboflavin synthases of S. pombe and Escherichia coli suggests oligomer contact sites and delineates the catalytic site for dimerization of the substrate and subsequent fragmentation of the pentacyclic intermediate. The pentacyclic substrate dimer was modeled into the proposed active site, and its stereochemical features were determined. The model suggests that the substrate molecule at the C- terminal domain donates a four-carbon unit to the substrate molecule bound at the N-terminal domain of an adjacent subunit in the oligomer
    corecore