93 research outputs found

    Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative perturbation theory

    Full text link
    We develop an analytical expression for the self-energy of the infinite-dimensional Hubbard model that is correct in a number of different limits. The approach represents a generalization of the iterative perturbation theory to arbitrary fillings. In the weak-coupling regime perturbation theory to second order in the interaction U is recovered. The theory is exact in the atomic limit. The high-energy behavior of the self-energy up to order (1/E)**2 and thereby the first four moments of the spectral density are reproduced correctly. Referring to a standard strong-coupling moment method, we analyze the limit of strong U. Different modifications of the approach are discussed and tested by comparing with the results of an exact diagonalization study.Comment: LaTeX, 14 pages, 5 ps figures included, title changed, references updated, minor change

    Anomalous low doping phase of the Hubbard model

    Full text link
    We present results of a systematic Quantum-Monte-Carlo study for the single-band Hubbard model. Thereby we evaluated single-particle spectra (PES & IPES), two-particle spectra (spin & density correlation functions), and the dynamical correlation function of suitably defined diagnostic operators, all as a function of temperature and hole doping. The results allow to identify different physical regimes. Near half-filling we find an anomalous `Hubbard-I phase', where the band structure is, up to some minor modifications, consistent with the Hubbard-I predictions. At lower temperatures, where the spin response becomes sharp, additional dispersionless `bands' emerge due to the dressing of electrons/holes with spin excitatons. We present a simple phenomenological fit which reproduces the band structure of the insulator quantitatively. The Fermi surface volume in the low doping phase, as derived from the single-particle spectral function, is not consistent with the Luttinger theorem, but qualitatively in agreement with the predictions of the Hubbard-I approximation. The anomalous phase extends up to a hole concentration of 15%, i.e. the underdoped region in the phase diagram of high-T_c superconductors. We also investigate the nature of the magnetic ordering transition in the single particle spectra. We show that the transition to an SDW-like band structure is not accomplished by the formation of any resolvable `precursor bands', but rather by a (spectroscopically invisible) band of spin 3/2 quasiparticles. We discuss implications for the `remnant Fermi surface' in insulating cuprate compounds and the shadow bands in the doped materials.Comment: RevTex-file, 20 PRB pages, 16 figures included partially as gif. A full ps-version including ps-figures can be found at http://theorie.physik.uni-wuerzburg.de/~eder/condmat.ps.gz Hardcopies of figures (or the entire manuscript) can also be obtained by e-mail request to: [email protected]

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae)

    Get PDF
    Ecological specialization and resource partitioning are expected to be particularly high in the species-rich communities of tropical vertebrates, yet many species have broader ecological niches than expected. In Neotropical ecosystems, Neotropical leaf-nosed bats (Phyllostomidae) are one of the most ecologically and functionally diverse vertebrate clades. Resource partitioning in phyllostomids might be achieved through differences in the ability to find and process food. We selected Micronycteris microtis, a very small (5–7 g) animalivorous phyllostomid, to explore whether broad resource use is associated with specific morphological, behavioral and performance traits within the phyllostomid radiation. We documented processing of natural prey and measured bite force in free-ranging M. microtis and other sympatric phyllostomids. We found that M. microtis had a remarkably broad diet for prey size and hardness. For the first time, we also report the consumption of vertebrates (lizards), which makes M. microtis the smallest carnivorous bat reported to date. Compared to other phyllostomids, M. microtis had the highest bite force for its size and cranial shape and high performance plasticity. Bite force and cranial shape appear to have evolved rapidly in the M. microtis lineage. High performance capacity and high efficiency in finding motionless prey might be key traits that allow M. microtis, and perhaps other species, to successfully co-exist with other gleaning bats

    Internet of Things in Agricultural Innovation and Security

    Get PDF
    The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the socio-environmental changes. A review of state-of-the-art communication architectures and underlying sensing technologies and communication mechanisms is presented with coverage of recent advances in the theory and applications of wireless underground communications. Major challenges in Ag-IoT design and implementation are also discussed

    Embryology and bony malformations of the craniovertebral junction

    Get PDF
    BACKGROUND: The embryology of the bony craniovertebral junction (CVJ) is reviewed with the purpose of explaining the genesis and unusual configurations of the numerous congenital malformations in this region. Functionally, the bony CVJ can be divided into a central pillar consisting of the basiocciput and dental pivot and a two-tiered ring revolving round the central pivot, comprising the foramen magnum rim and occipital condyles above and the atlantal ring below. Embryologically, the central pillar and the surrounding rings descend from different primordia, and accordingly, developmental anomalies at the CVJ can also be segregated into those affecting the central pillar and those affecting the surrounding rings, respectively. DISCUSSION: A logical classification of this seemingly unwieldy group of malformations is thus possible based on their ontogenetic lineage, morbid anatomy, and clinical relevance. Representative examples of the main constituents of this classification scheme are given, and their surgical treatments are selectively discussed

    The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy

    Get PDF

    Minkowski4×S2 solutions of IIB supergravity

    No full text
    We classify urn:x-wiley:00158208:media:prop201800006:prop201800006-math-0002 Minkowski4 solutions of IIB supergravity with an urn:x-wiley:00158208:media:prop201800006:prop201800006-math-0003 symmetry geometrically realized by an S2‐foliation in the remaining six dimensions. For the various cases of the classification, we reduce the supersymmetric system of equations to PDEs. These cases often accommodate systems of intersecting branes and half‐maximally supersymmetric AdS5, 6, 7 solutions when they exist. As an example, we analyze the AdS6 case in more detail, reducing the supersymmetry equations to a single cylindrical Laplace equation. We also recover an already known linear dilaton background dual to the (1, 1) Little String Theory (LST) living on NS5‐branes, and we find a new Minkowski5 linear dilaton solution from brane intersections. Finally, we also discuss some simple Minkowski4 solutions based on compact conformal Calabi‐Yau manifolds
    corecore