505 research outputs found

    RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems

    Full text link
    The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2)(1-4) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (T(H)1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62842/1/416194a.pd

    NOD2-C2 - a novel NOD2 isoform activating NF-κB in a muramyl dipeptide-independent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The innate immune system employs several receptor families that form the basis of sensing pathogen-associated molecular patterns. NOD (nucleotide-binding and oligomerization domain) like receptors (NLRs) comprise a group of cytosolic proteins that trigger protective responses upon recognition of intracellular danger signals. NOD2 displays a tandem caspase recruitment domain (CARD) architecture, which is unique within the NLR family.</p> <p>Findings</p> <p>Here, we report a novel alternative transcript of the <it>NOD2 </it>gene, which codes for a truncated tandem CARD only protein, called NOD2-C2. The transcript isoform is highest expressed in leucocytes, a natural barrier against pathogen invasion, and is strictly linked to promoter usage as well as predominantly to one allele of the single nucleotide polymorphism rs2067085. Contrary to a previously identified truncated single CARD NOD2 isoform, NOD2-S, NOD2-C2 is able to activate NF-κB in a dose dependent manner independently of muramyl dipeptide (MDP). On the other hand NOD2-C2 competes with MDPs ability to activate the NOD2-driven NF-κB signaling cascade.</p> <p>Conclusion</p> <p>NOD2 transcripts having included an alternative exon downstream of exon 3 (exon 3a) are the endogenous equivalents of a previously described <it>in vitro </it>construct with the putative protein composed of only the two N-terminal CARDs. This protein form (NOD2-C2) activates NF-κB independent of an MDP stimulus and is a potential regulator of NOD2 signaling.</p

    The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    Get PDF
    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs

    A novel single nucleotide polymorphism within the NOD2 gene is associated with pulmonary tuberculosis in the Chinese Han, Uygur and Kazak populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study aimed to investigate the genetic polymorphisms in exon 4 of the <it>NOD2 </it>gene in tuberculosis patients and healthy controls, in order to clarify whether polymorphisms in the <it>NOD2 </it>gene is associated with tuberculosis.</p> <p>Methods</p> <p>A case-control study was performed on the Chinese Han, Uygur and Kazak populations. Exon 4 of the <it>NOD2 </it>gene was sequenced in 425 TB patients and 380 healthy controls to identify SNPs.</p> <p>Results</p> <p>The frequency of T/G genotypes for the Arg587Arg (CGT → CGG) single nucleotide polymorphism (SNP) in <it>NOD2 </it>was found to be significantly higher in the Uygur (34.9%) and Kazak (37.1%) populations than the Han population (18.6%). Also, the frequency of G/G genotypes for the Arg587Arg SNP was significantly higher in the Uyghur (8.3%) and Kazak (5.4%) populations than the Han population (0.9%). Meanwhile, no significant difference was found in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Uyghur and Kazak populations (<it>P </it>> 0.05) whereas, a significant difference was observed in the Arg587Arg polymorphism between the tuberculosis patients and healthy controls in the Han population (<it>P </it>< 0.01). The odd ratio of 2.16 (95% CI = 1.31-3.58; <it>P </it>< 0.01) indicated that the Arg587Arg SNP in <it>NOD2 </it>may be associated with susceptibility to tuberculosis in the Chinese Han population.</p> <p>Conclusions</p> <p>Our study is the first to demonstrate that the Arg587Arg SNP in <it>NOD2 </it>is a new possible risk factor for tuberculosis in the Chinese Han population, but not in the Uyghur and Kazak populations. Our results may reflect racial differences in genetic susceptibility to tuberculosis.</p

    Characterization of a Novel Interaction between Bcl-2 Members Diva and Harakiri

    Get PDF
    Interactions within proteins of the Bcl-2 family are key in the regulation of apoptosis. The death-inducing members control apoptotic mechanisms partly by antagonizing the prosurvival proteins through heterodimer formation. Structural and biophysical studies on these complexes are providing important clues to understand their function. To help improve our knowledge on protein-protein interactions within the Bcl-2 family we have studied the binding between two of its members: mouse Diva and human Harakiri. Diva has been shown to perform both prosurvival and killing activity. In contrast, Harakiri induces cell death by interacting with antiapoptotic Bcl-2 members. Here we show using ELISA and NMR that Diva and Harakiri can interact in vitro. Combining the NMR data with the previously reported three-dimensional structure of Diva we find that Harakiri binds to a specific region in Diva. This interacting surface is equivalent to the known binding area of prosurvival Bcl-2 members from the reported structures of the complexes, suggesting that Diva could function at the structural level similarly to the antiapoptotic proteins of the Bcl-2 family. We illustrate this result by building a structural model of the heterodimer using molecular docking and the NMR data as restraints. Moreover, combining circular dichroism and NMR we also show that Harakiri is largely unstructured with residual (13%) α-helical conformation. This result agrees with intrinsic disorder previously observed in other Bcl-2 members. In addition, Harakiri constructs of different length were studied to identify the region critical for the interaction. Differential affinity for Diva of these constructs suggests that the amino acid sequence flanking the interacting region could play an important role in binding

    Filarial Lymphedema Is Characterized by Antigen- Specific Th1 and Th17 Proinflammatory Responses and a Lack of Regulatory T Cells

    Get PDF
    Background: Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Methods and Findings: To elucidate the role of CD4+ T cell subsets in the development of lymphatic pathology, we examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA) and compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like receptors (TLR1–10) and Nod-like receptors (Nod1, Nod2, and NALP3) in response to BmA. BmA induced significantly higher production of Th1-type cytokines—IFN-c and TNF-a—in patients with lymphedema compared with asymptomatic individuals. Notably, expression of the Th17 family of cytokines—IL-17A, IL-17F, IL-21, and IL-23—was also significantly upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFb, and CTLA-4, known to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with asymptomatic controls. Conclusion: Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of Toll- and Nod-like receptors in pathogenesis of filarial lymphedema
    corecore