26 research outputs found

    Chat mining for gender prediction

    Get PDF
    The aim of this paper is to investigate the feasibility of predicting the gender of a text document's author using linguistic evidence. For this purpose, term- and style-based classification techniques are evaluated over a large collection of chat messages. Prediction accuracies up to 84.2% are achieved, illustrating the applicability of these techniques to gender prediction. Moreover, the reverse problem is exploited, and the effect of gender on the writing style is discussed. © Springer-Verlag Berlin Heidelberg 2006

    Indexing Information for Data Forensics

    Get PDF
    We introduce novel techniques for organizing the indexing structures of how data is stored so that alterations from an original version can be detected and the changed values specifically identified. We give forensic constructions for several fundamental data structures, including arrays, linked lists, binary search trees, skip lists, and hash tables. Some of our constructions are based on a new reduced-randomness construction for nonadaptive combinatorial group testing

    Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis

    Get PDF
    Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link

    Co-management in Healthcare: Negotiating Professional Boundaries

    No full text
    This article investigates discursive practices associated with the co-management of patients between healthcare providers. Specifically, we focus on two genres (38 referral letters and 37 consultant reports) written by optometrists and ophthalmologists — two groups who are experiencing interprofessional tension over their scopes of practice. In our analysis we foreground four kinds of modality associated with verbs — epistemic, deontic, phatic and subjective. We found that these healthcare providers shared in the epistemic resources used to hedge their sense of clinical certainty, and that ophthalmologists used deontic resources to control future action. However, we also noted that both professions used deontic, phatic and subjective resources to create dialogical space for each other to participate in some future relationship. In fact, one of the main points of this correspondence might be to establish personal relationships between practitioners. Unfortunately, however, this subtle use of modality to negotiate professional boundaries is fading as many ophthalmologists, due to workload issues, are not responding to referral letters or are converting their correspondence to form letters

    Synthesizing cross-ambiguity functions using the improved bat algorithm

    No full text
    The cross-ambiguity function (CAF) relates to the correlation processing of signals in radar, sonar, and communication systems in the presence of delays and Doppler shifts. It is a commonly used tool in the analysis of signals in these systems when both delay and Doppler shifts are present. In this chapter, we aim to tackle the CAF synthesization problem such that the synthesized CAF approximates a desired CAF. A CAF synthesization problem is addressed by jointly designing a pair of waveforms using a metaheuristic approach based on the echolocation of bats. Through four examples, it is shown that such an approach can be used as an effective tool in synthesizing different types of CAF
    corecore